
auditok Documentation
Release 0.1.5

Amine Sehili

Aug 24, 2020

Contents

1 Requirements 3

2 Installation 5

3 Getting started 7
3.1 auditok Command-line Usage Guide . 7
3.2 auditok API Tutorial . 16

4 API Reference 27
4.1 auditok.core . 27
4.2 auditok.util . 30
4.3 auditok.io . 35
4.4 auditok.dataset . 40

5 Indices and tables 41

Python Module Index 43

Index 45

i

ii

auditok Documentation, Release 0.1.5

auditok is an Audio Activity Detection tool that can process online data (read from an audio device or from standard
input) as well as audio files. It can be used as a command line program and offers an easy to use API.

The latest version of this documentation can be found at Readthedocs.

Contents 1

https://travis-ci.org/amsehili/auditok
http://auditok.readthedocs.org/en/latest/?badge=latest
http://auditok.readthedocs.org/en/latest/

auditok Documentation, Release 0.1.5

2 Contents

CHAPTER 1

Requirements

auditok can be used with standard Python!

However, if you want more features, the following packages are needed:

• Pydub : read audio files in popular audio formats (ogg, mp3, etc.) or extract audio from a video file.

• PyAudio : read audio data from the microphone and play back detections.

• matplotlib : plot audio signal and detections (see figures above).

• numpy : required by matplotlib. Also used for math operations instead of standard python if available.

• Optionally, you can use sox or [p]arecord for data acquisition and feed auditok using a pipe.

3

https://github.com/jiaaro/pydub
http://people.csail.mit.edu/hubert/pyaudio/
http://matplotlib.org/
http://www.numpy.org

auditok Documentation, Release 0.1.5

4 Chapter 1. Requirements

CHAPTER 2

Installation

Install with pip:

sudo pip install auditok

or install the latest version on Github:

git clone https://github.com/amsehili/auditok.git
cd auditok
sudo python setup.py install

5

auditok Documentation, Release 0.1.5

6 Chapter 2. Installation

CHAPTER 3

Getting started

3.1 auditok Command-line Usage Guide

This user guide will go through a few of the most useful operations you can use auditok for and present two practical
use cases.

Contents

• auditok Command-line Usage Guide

– Two-figure explanation

– Command line usage

* Try the detector with your voice

* Play back detections

* Set detection threshold

* Set format for printed detections information

* 1st Practical use case example: generate a subtitles template

* 2nd Practical use case example: build a (very) basic voice control application

* Plot signal and detections

* Save plot as image or PDF

* Read data from file

* Limit the length of acquired data

* Save the whole acquired audio signal

* Save each detection into a separate audio file

7

auditok Documentation, Release 0.1.5

* Setting detection parameters

* Debugging

– License

– Author

3.1.1 Two-figure explanation

The following two figures illustrate an audio signal (blue) and regions detected as valid audio activities (green rectan-
gles) according to a given threshold (red dashed line). They respectively depict the detection result when:

1. the detector tolerates phases of silence of up to 0.3 second (300 ms) within an audio activity (also referred to as
acoustic event):

2. the detector splits an audio activity event into many activities if the within activity silence is over 0.2 second:

Beyond plotting signal and detections, you can play back audio activities as they are detected, save them or run a
user command each time there is an activity, using, optionally, the file name of audio activity as an argument for the
command.

3.1.2 Command line usage

Try the detector with your voice

The first thing you want to check is perhaps how auditok detects your voice. If you have installed PyAudio just run
(Ctrl-C to stop):

auditok

This will print id start-time and end-time for each detected activity. If you don’t have PyAudio, you can use sox for
data acquisition (sudo apt-get install sox) and tell auditok to read data from standard input:

8 Chapter 3. Getting started

auditok Documentation, Release 0.1.5

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -i - -r 16000 -w 2 -c 1

Note that when data is read from standard input the same audio parameters must be used for both sox (or any other
data generation/acquisition tool) and auditok. The following table summarizes audio parameters.

Audio parameter sox option auditok option auditok default
Sampling rate -r -r 16000
Sample width -b (bits) -w (bytes) 2
Channels -c -c 1
Encoding -e None always signed integer

According to this table, the previous command can be run as:

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -i -

Play back detections

auditok -E

or

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -i - -E

Option -E stands for echo, so auditok will play back whatever it detects. Using -E requires PyAudio, if you don’t have
PyAudio and want to play detections with sox, use the -C option:

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -i - -C "play -q -t raw -r
→˓16000 -c 1 -b 16 -e signed $"

The -C option tells auditok to interpret its content as a command that should be run whenever auditok detects an
audio activity, replacing the $ by a name of a temporary file into which the activity is saved as raw audio. Here we use
play to play the activity, giving the necessary play arguments for raw data.

3.1. auditok Command-line Usage Guide 9

auditok Documentation, Release 0.1.5

rec and play are just an alias for sox.

The -C option can be useful in many cases. Imagine a command that sends audio data over a network only if there is
an audio activity and saves bandwidth during silence.

Set detection threshold

If you notice that there are too many detections, use a higher value for energy threshold (the current version only
implements a validator based on energy threshold. The use of spectral information is also desirable and might be part
of future releases). To change the energy threshold (default: 50), use option -e:

auditok -E -e 55

or

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -i - -e 55 -C "play -q -t raw
→˓-r 16000 -c 1 -b 16 -e signed $"

If however you figure out that the detector is missing some of or all your audio activities, use a lower value for -e.

Set format for printed detections information

By default, auditok prints the id, start-time and end-time of each detected activity:

1 1.87 2.67
2 3.05 3.73
3 3.97 4.49
...

If you want to customize the output format, use –printf option:

auditok -e 55 --printf "[{id}]: {start} to {end}"

output

[1]: 0.22 to 0.67
[2]: 2.81 to 4.18
[3]: 5.53 to 6.44
[4]: 7.32 to 7.82
...

Keywords {id}, {start} and {end} can be placed and repeated anywhere in the text. Time is shown in seconds, if you
want a more detailed time information, use –time-format:

auditok -e 55 –printf “[{id}]: {start} to {end}” –time-format “%h:%m:%s.%i”

output

[1]: 00:00:01.080 to 00:00:01.760
[2]: 00:00:02.420 to 00:00:03.440
[3]: 00:00:04.930 to 00:00:05.570
[4]: 00:00:05.690 to 00:00:06.020
[5]: 00:00:07.470 to 00:00:07.980
...

Valid time directives are: %h (hours) %m (minutes) %s (seconds) %i (milliseconds). Two other directives, %S (default)
and %I can be used for absolute time in seconds and milliseconds respectively.

10 Chapter 3. Getting started

auditok Documentation, Release 0.1.5

1st Practical use case example: generate a subtitles template

Using –printf ‘ and ‘–time-format, the following command, used with an input audio or video file, will generate and
an srt file template that can be later edited with a subtitles editor in a way that reduces the time needed to define when
each utterance starts and where it ends:

auditok -e 55 -i input.wav -m 10 --printf "{id}\n{start} --> {end}\nPut some text
→˓here...\n" --time-format "%h:%m:%s.%i"

output

1
00:00:00.730 --> 00:00:01.460
Put some text here...

2
00:00:02.440 --> 00:00:03.900
Put some text here...

3
00:00:06.410 --> 00:00:06.970
Put some text here...

4
00:00:07.260 --> 00:00:08.340
Put some text here...

5
00:00:09.510 --> 00:00:09.820
Put some text here...

2nd Practical use case example: build a (very) basic voice control application

This repository supplies a bash script the can send audio data to Google’s Speech Recognition service and get its
transcription. In the following we will use auditok as a lower layer component of a voice control application. The
basic idea is to tell auditok to run, for each detected audio activity, a certain number of commands that make up the
rest of our voice control application.

Assume you have installed sox and downloaded the Speech Recognition script. The sequence of commands to run is:

1- Convert raw audio data to flac using sox:

sox -t raw -r 16000 -c 1 -b 16 -e signed raw_input output.flac

2- Send flac audio data to Google and get its filtered transcription using speech-rec.sh :

speech-rec.sh -i output.flac -r 16000

3- Use grep to select lines that contain transcript:

grep transcript

4- Launch the following script, giving it the transcription as input:

#!/bin/bash

(continues on next page)

3.1. auditok Command-line Usage Guide 11

https://github.com/amsehili/gspeech-rec
https://github.com/amsehili/gspeech-rec/blob/master/speech-rec.sh

auditok Documentation, Release 0.1.5

(continued from previous page)

read line

RES=`echo "$line" | grep -i "open firefox"`

if [[$RES]]
then

echo "Launch command: 'firefox &' ... "
firefox &
exit 0

fi

exit 0

As you can see, the script can handle one single voice command. It runs firefox if the text it receives contains open
firefox. Save a script into a file named voice-control.sh (don’t forget to run a chmod u+x voice-control.sh).

Now, thanks to option -C, we will use the four instructions with a pipe and tell auditok to run them each time it detects
an audio activity. Try the following command and say open firefox:

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -M 5 -m 3 -n 1 --debug-file
→˓file.log -e 60 -C "sox -t raw -r 16000 -c 1 -b 16 -e signed $ audio.flac ; speech-
→˓rec.sh -i audio.flac -r 16000 | grep transcript | ./voice-control.sh"

Here we used option -M 5 to limit the amount of read audio data to 5 seconds (auditok stops if there are no more data)
and option -n 1 to tell auditok to only accept tokens of 1 second or more and throw any token shorter than 1 second.

With –debug-file file.log, all processing steps are written into file.log with their timestamps, including any run com-
mand and the file name the command was given.

Plot signal and detections

use option -p. Requires matplotlib and numpy.

auditok ... -p

Save plot as image or PDF

auditok ... --save-image output.png

Requires matplotlib and numpy. Accepted formats: eps, jpeg, jpg, pdf, pgf, png, ps, raw, rgba, svg, svgz, tif, tiff.

Read data from file

auditok -i input.wav ...

Install pydub for other audio formats.

Limit the length of acquired data

auditok -M 12 ...

Time is in seconds. This is valid for data read from an audio device, stdin or an audio file.

12 Chapter 3. Getting started

auditok Documentation, Release 0.1.5

Save the whole acquired audio signal

auditok -O output.wav ...

Install pydub for other audio formats.

Save each detection into a separate audio file

auditok -o det_{N}_{start}_{end}.wav ...

You can use a free text and place {N}, {start} and {end} wherever you want, they will be replaced by detection number,
start time and end time respectively. Another example:

auditok -o {start}-{end}.wav ...

Install pydub for more audio formats.

Setting detection parameters

Alongside the threshold option -e seen so far, a couple of other options can have a great impact on the detector behavior.
These options are summarized in the following table:

Option Description Unit Default
-n Minimum length an

accepted audio activity
should have

second 0.2 (200 ms)

-m Maximum length an
accepted audio activity
should reach

second
5.

-s Maximum length of a
continuous silence period
within an accepted audio
activity

second 0.3 (300 ms)

-d Drop trailing silence from
an accepted audio activity

boolean False

-a Analysis window length
(default value should be
good)

second 0.01 (10 ms)

Normally, auditok does keeps trailing silence of a detected activity. Trailing silence is at most as long as maximum
length of a continuous silence (option -m) and can be important for some applications such as speech recognition. If
you want to drop trailing silence anyway use option -d. The following two figures show the output of the detector
when it keeps the trailing silence and when it drops it respectively:

auditok ... -d

You might want to only consider audio activities if they are above a certain duration. The next figure is the result of a
detector that only accepts detections of 0.8 second and longer:

auditok ... -n 0.8

3.1. auditok Command-line Usage Guide 13

auditok Documentation, Release 0.1.5

14 Chapter 3. Getting started

auditok Documentation, Release 0.1.5

Finally it is almost always interesting to limit the length of detected audio activities. In any case, one does not want
a too long audio event such as an alarm or a drill to hog the detector. For illustration purposes, we set the maximum
duration to 0.4 second for this detector, so an audio activity is delivered as soon as it reaches 0.4 second:

auditok ... -m 0.4

Debugging

If you want to print what happens when something is detected, use option -D.

auditok ... -D

If you want to save everything into a log file, use –debug-file file.log.

3.1. auditok Command-line Usage Guide 15

auditok Documentation, Release 0.1.5

auditok ... --debug-file file.log

3.1.3 License

auditok is published under the GNU General Public License Version 3.

3.1.4 Author

Amine Sehili (<amine.sehili@gmail.com>)

3.2 auditok API Tutorial

Contents

• auditok API Tutorial

– Illustrative examples with strings

* Extract sub-sequences of consecutive upper case letters

* Tolerate up to two non-valid (lower case) letters within an extracted sequence

* Remove trailing silence

* Limit the length of detected tokens

– auditok and Audio Data

– Examples using real audio data

* Extract isolated phrases from an utterance

* Trim leading and trailing silence

* Online audio signal processing

– Contributing

– License

auditok is a module that can be used as a generic tool for data tokenization. Although its core motivation is Acoustic
Activity Detection (AAD) and extraction from audio streams (i.e. detect where a noise/an acoustic activity occurs
within an audio stream and extract the corresponding portion of signal), it can easily be adapted to other tasks.

Globally speaking, it can be used to extract, from a sequence of observations, all sub-sequences that meet a certain
number of criteria in terms of:

1. Minimum length of a valid token (i.e. sub-sequence)

2. Maximum length of a valid token

3. Maximum tolerated consecutive non-valid observations within a valid token

Examples of a non-valid observation are: a non-numeric ascii symbol if you are interested in sub-sequences of numeric
symbols, or a silent audio window (of 10, 20 or 100 milliseconds for instance) if what interests you are audio regions
made up of a sequence of “noisy” windows (whatever kind of noise: speech, baby cry, laughter, etc.).

16 Chapter 3. Getting started

mailto:amine.sehili@gmail.com

auditok Documentation, Release 0.1.5

The most important component of auditok is the auditok.core.StreamTokenizer class. An instance of
this class encapsulates a auditok.util.DataValidator and can be configured to detect the desired regions
from a stream. The auditok.core.StreamTokenizer.tokenize() method accepts a auditok.util.
DataSource object that has a read method. Read data can be of any type accepted by the validator.

As the main aim of this module is Audio Activity Detection, it provides the auditok.util.ADSFactory fac-
tory class that makes it very easy to create an auditok.util.ADSFactory.AudioDataSource (a class that
implements auditok.util.DataSource) object, be that from:

• A file on the disk

• A buffer of data

• The built-in microphone (requires PyAudio)

The auditok.util.ADSFactory.AudioDataSource class inherits from auditok.util.DataSource
and supplies a higher abstraction level than auditok.io.AudioSource thanks to a bunch of handy features:

• Define a fixed-length block_size (alias bs, i.e. analysis window)

• Alternatively, use block_dur (duration in seconds, alias bd)

• Allow overlap between two consecutive analysis windows (if one of hop_size , hs or hop_dur , hd keywords is
used and is > 0 and < block_size). This can be very important if your validator use the spectral information of
audio data instead of raw audio samples.

• Limit the amount (i.e. duration) of read data (if keyword max_time or mt is used, very useful when reading data
from the microphone)

• Record all read data and rewind if necessary (if keyword record or rec , also useful if you read data from the
microphone and you want to process it many times off-line and/or save it)

See auditok.util.ADSFactory documentation for more information.

Last but not least, the current version has only one audio window validator based on signal energy
(:class:‘auditok.util.AudioEnergyValidator).

3.2.1 Illustrative examples with strings

Let us look at some examples using the auditok.util.StringDataSource class created for test and illus-
tration purposes. Imagine that each character of auditok.util.StringDataSource data represents an audio
slice of 100 ms for example. In the following examples we will use upper case letters to represent noisy audio slices
(i.e. analysis windows or frames) and lower case letter for silent frames.

Extract sub-sequences of consecutive upper case letters

We want to extract sub-sequences of characters that have:

• A minimum length of 1 (min_length = 1)

• A maximum length of 9999 (max_length = 9999)

• Zero consecutive lower case characters within them (max_continuous_silence = 0)

We also create the UpperCaseChecker with a read method that returns True if the checked character is in upper case
and False otherwise.

from auditok import StreamTokenizer, StringDataSource, DataValidator

class UpperCaseChecker(DataValidator):
(continues on next page)

3.2. auditok API Tutorial 17

auditok Documentation, Release 0.1.5

(continued from previous page)

def is_valid(self, frame):
return frame.isupper()

dsource = StringDataSource("aaaABCDEFbbGHIJKccc")
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),

min_length=1, max_length=9999, max_continuous_silence=0)

tokenizer.tokenize(dsource)

The output is a list of two tuples, each contains the extracted sub-sequence and its start and end position in the original
sequence respectively:

[(['A', 'B', 'C', 'D', 'E', 'F'], 3, 8), (['G', 'H', 'I', 'J', 'K'], 11, 15)]

Tolerate up to two non-valid (lower case) letters within an extracted sequence

To do so, we set max_continuous_silence =2:

from auditok import StreamTokenizer, StringDataSource, DataValidator

class UpperCaseChecker(DataValidator):
def is_valid(self, frame):

return frame.isupper()

dsource = StringDataSource("aaaABCDbbEFcGHIdddJKee")
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),

min_length=1, max_length=9999, max_continuous_silence=2)

tokenizer.tokenize(dsource)

output:

[(['A', 'B', 'C', 'D', 'b', 'b', 'E', 'F', 'c', 'G', 'H', 'I', 'd', 'd'], 3, 16), (['J
→˓', 'K', 'e', 'e'], 18, 21)]

Notice the trailing lower case letters “dd” and “ee” at the end of the two tokens. The default behavior of auditok.
core.StreamTokenizer is to keep the trailing silence if it does not exceed max_continuous_silence. This can
be changed using the StreamTokenizer.DROP_TRAILING_SILENCE mode (see next example).

Remove trailing silence

Trailing silence can be useful for many sound recognition applications, including speech recognition. Moreover, from
the human auditory system point of view, trailing low energy signal helps removing abrupt signal cuts.

If you want to remove it anyway, you can do it by setting mode to StreamTokenizer.DROP_TRAILING_SILENCE:

from auditok import StreamTokenizer, StringDataSource, DataValidator

class UpperCaseChecker(DataValidator):
def is_valid(self, frame):

return frame.isupper()

dsource = StringDataSource("aaaABCDbbEFcGHIdddJKee")
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),

(continues on next page)

18 Chapter 3. Getting started

auditok Documentation, Release 0.1.5

(continued from previous page)

min_length=1, max_length=9999, max_continuous_silence=2,
mode=StreamTokenizer.DROP_TRAILING_SILENCE)

tokenizer.tokenize(dsource)

output:

[(['A', 'B', 'C', 'D', 'b', 'b', 'E', 'F', 'c', 'G', 'H', 'I'], 3, 14), (['J', 'K'],
→˓18, 19)]

Limit the length of detected tokens

Imagine that you just want to detect and recognize a small part of a long acoustic event (e.g. engine noise, water flow,
etc.) and avoid that that event hogs the tokenizer and prevent it from feeding the event to the next processing step (i.e.
a sound recognizer). You can do this by:

• limiting the length of a detected token.

and

• using a callback function as an argument to auditok.core.StreamTokenizer.tokenize
so that the tokenizer delivers a token as soon as it is detected.

The following code limits the length of a token to 5:

from auditok import StreamTokenizer, StringDataSource, DataValidator

class UpperCaseChecker(DataValidator):
def is_valid(self, frame):

return frame.isupper()

dsource = StringDataSource("aaaABCDEFGHIJKbbb")
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),

min_length=1, max_length=5, max_continuous_silence=0)

def print_token(data, start, end):
print("token = '{0}', starts at {1}, ends at {2}".format(''.join(data), start,

→˓end))

tokenizer.tokenize(dsource, callback=print_token)

output:

"token = 'ABCDE', starts at 3, ends at 7"
"token = 'FGHIJ', starts at 8, ends at 12"
"token = 'K', starts at 13, ends at 13"

3.2.2 auditok and Audio Data

In the rest of this document we will use auditok.util.ADSFactory , auditok.util.
AudioEnergyValidator and auditok.core.StreamTokenizer for Audio Activity Detection demos
using audio data. Before we get any further it is worth, explaining a certain number of points.

3.2. auditok API Tutorial 19

auditok Documentation, Release 0.1.5

auditok.util.ADSFactory.ads() method is used to create an auditok.util.ADSFactory.
AudioDataSource object either from a wave file, the built-in microphone or a user-supplied data buffer. Refer
to the API reference for more information and examples on ADSFactory.ads() and AudioDataSource.

The created AudioDataSource object is then passed to StreamTokenizer.tokenize() for tokenization.

auditok.util.ADSFactory.ads() accepts a number of keyword arguments, of which none is mandatory.
The returned AudioDataSource object’s features and behavior can however greatly differ depending on the passed
arguments. Further details can be found in the respective method documentation.

Note however the following two calls that will create an AudioDataSource that reads data from an audio file and
from the built-in microphone respectively.

from auditok import ADSFactory

Get an AudioDataSource from a file
use 'filename', alias 'fn' keyword argument
file_ads = ADSFactory.ads(filename = "path/to/file/")

Get an AudioDataSource from the built-in microphone
The returned object has the default values for sampling
rate, sample width an number of channels. see method's
documentation for customized values
mic_ads = ADSFactory.ads()

For StreamTkenizer, parameters min_length, max_length and max_continuous_silence are expressed in terms of
number of frames. Each call to AudioDataSource.read() returns one frame of data or None.

If you want a max_length of 2 seconds for your detected sound events and your analysis window is 10 ms long, you
have to specify a max_length of 200 (int(2. / (10. / 1000)) == 200). For a max_continuous_silence of 300 ms for
instance, the value to pass to StreamTokenizer is 30 (int(0.3 / (10. / 1000)) == 30).

Each time StreamTkenizer calls the read() (has no argument) method of an AudioDataSource object, it
returns the same amount of data, except if there are no more data (returns what’s left in stream or None).

This fixed-length amount of data is referred here to as analysis window and is a parameter of ADSFactory.ads()
method. By default ADSFactory.ads() uses an analysis window of 10 ms.

The number of samples that 10 ms of audio data contain will vary, depending on the sampling rate of your audio
source/data (file, microphone, etc.). For a sampling rate of 16KHz (16000 samples per second), we have 160 samples
for 10 ms.

You can use the block_size keyword (alias bs) to define your analysis window:

from auditok import ADSFactory

'''
Assume you have an audio file with a sampling rate of 16000
'''

file_ads.read() will return blocks of 160 sample
file_ads = ADSFactory.ads(filename = "path/to/file/", block_size = 160)

file_ads.read() will return blocks of 320 sample
file_ads = ADSFactory.ads(filename = "path/to/file/", bs = 320)

Fortunately, you can specify the size of your analysis window in seconds, thanks to keyword block_dur (alias bd):

20 Chapter 3. Getting started

auditok Documentation, Release 0.1.5

from auditok import ADSFactory
use an analysis window of 20 ms
file_ads = ADSFactory.ads(filename = "path/to/file/", bd = 0.02)

For StreamTkenizer, each read() call that does not return None is treated as a processing frame.
StreamTkenizer has no way to figure out the temporal length of that frame (why sould it?). So to correctly
initialize your StreamTokenizer, based on your analysis window duration, use something like:

analysis_win_seconds = 0.01 # 10 ms
my_ads = ADSFactory.ads(block_dur = analysis_win_seconds)
analysis_window_ms = analysis_win_seconds * 1000

If you want your maximum continuous silence to be 300 ms use:
max_continuous_silence = int(300. / analysis_window_ms)

which is the same as:
max_continuous_silence = int(0.3 / (analysis_window_ms / 1000))

or simply:
max_continuous_silence = 30

3.2.3 Examples using real audio data

Extract isolated phrases from an utterance

We will build an auditok.util.ADSFactory.AudioDataSource using a wave file from the database. The
file contains of isolated pronunciation of digits from 1 to 1 in Arabic as well as breath-in/out between 2 and 3. The
code will play the original file then the detected sounds separately. Note that we use an energy_threshold of 65, this
parameter should be carefully chosen. It depends on microphone quality, background noise and the amplitude of
events you want to detect.

from auditok import ADSFactory, AudioEnergyValidator, StreamTokenizer, player_for,
→˓dataset

We set the `record` argument to True so that we can rewind the source
asource = ADSFactory.ads(filename=dataset.one_to_six_arabic_16000_mono_bc_noise,
→˓record=True)

validator = AudioEnergyValidator(sample_width=asource.get_sample_width(), energy_
→˓threshold=65)

Default analysis window is 10 ms (float(asource.get_block_size()) / asource.get_
→˓sampling_rate())
min_length=20 : minimum length of a valid audio activity is 20 * 10 == 200 ms
max_length=4000 : maximum length of a valid audio activity is 400 * 10 == 4000 ms
→˓== 4 seconds
max_continuous_silence=30 : maximum length of a tolerated silence within a valid
→˓audio activity is 30 * 30 == 300 ms
tokenizer = StreamTokenizer(validator=validator, min_length=20, max_length=400, max_
→˓continuous_silence=30)

asource.open()
tokens = tokenizer.tokenize(asource)

Play detected regions back
(continues on next page)

3.2. auditok API Tutorial 21

auditok Documentation, Release 0.1.5

(continued from previous page)

player = player_for(asource)

Rewind and read the whole signal
asource.rewind()
original_signal = []

while True:
w = asource.read()
if w is None:

break
original_signal.append(w)

original_signal = ''.join(original_signal)

print("Playing the original file...")
player.play(original_signal)

print("playing detected regions...")
for t in tokens:

print("Token starts at {0} and ends at {1}".format(t[1], t[2]))
data = ''.join(t[0])
player.play(data)

assert len(tokens) == 8

The tokenizer extracts 8 audio regions from the signal, including all isolated digits (from 1 to 6) as well as the 2-phase
respiration of the subject. You might have noticed that, in the original file, the last three digit are closer to each other
than the previous ones. If you wan them to be extracted as one single phrase, you can do so by tolerating a larger
continuous silence within a detection:

tokenizer.max_continuous_silence = 50
asource.rewind()
tokens = tokenizer.tokenize(asource)

for t in tokens:
print("Token starts at {0} and ends at {1}".format(t[1], t[2]))
data = ''.join(t[0])
player.play(data)

assert len(tokens) == 6

Trim leading and trailing silence

The tokenizer in the following example is set up to remove the silence that precedes the first acoustic activity or follows
the last activity in a record. It preserves whatever it founds between the two activities. In other words, it removes the
leading and trailing silence.

Sampling rate is 44100 sample per second, we’ll use an analysis window of 100 ms (i.e. block_size == 4410)

Energy threshold is 50.

The tokenizer will start accumulating windows up from the moment it encounters the first analysis window of an
energy >= 50. ALL the following windows will be kept regardless of their energy. At the end of the analysis, it will
drop trailing windows with an energy below 50.

22 Chapter 3. Getting started

auditok Documentation, Release 0.1.5

This is an interesting example because the audio file we’re analyzing contains a very brief noise that occurs within the
leading silence. We certainly do want our tokenizer to stop at this point and considers whatever it comes after as a use-
ful signal. To force the tokenizer to ignore that brief event we use two other parameters init_min and init_max_silence.
By init_min = 3 and init_max_silence = 1 we tell the tokenizer that a valid event must start with at least 3 noisy
windows, between which there is at most 1 silent window.

Still with this configuration we can get the tokenizer detect that noise as a valid event (if it actually contains 3 consec-
utive noisy frames). To circumvent this we use an enough large analysis window (here of 100 ms) to ensure that the
brief noise be surrounded by a much longer silence and hence the energy of the overall analysis window will be below
50.

When using a shorter analysis window (of 10 ms for instance, block_size == 441), the brief noise contributes more to
energy calculation which yields an energy of over 50 for the window. Again we can deal with this situation by using a
higher energy threshold (55 for example).

from auditok import ADSFactory, AudioEnergyValidator, StreamTokenizer, player_for,
→˓dataset

record = True so that we'll be able to rewind the source.
asource = ADSFactory.ads(filename=dataset.was_der_mensch_saet_mono_44100_lead_trail_
→˓silence,

record=True, block_size=4410)
asource.open()

original_signal = []
Read the whole signal
while True:

w = asource.read()
if w is None:

break
original_signal.append(w)

original_signal = ''.join(original_signal)

rewind source
asource.rewind()

Create a validator with an energy threshold of 50
validator = AudioEnergyValidator(sample_width=asource.get_sample_width(), energy_
→˓threshold=50)

Create a tokenizer with an unlimited token length and continuous silence within a
→˓token
Note the DROP_TRAILING_SILENCE mode that will ensure removing trailing silence
trimmer = StreamTokenizer(validator, min_length = 20, max_length=99999999, init_min=3,
→˓ init_max_silence=1, max_continuous_silence=9999999, mode=StreamTokenizer.DROP_
→˓TRAILING_SILENCE)

tokens = trimmer.tokenize(asource)

Make sure we only have one token
assert len(tokens) == 1, "Should have detected one single token"

trimmed_signal = ''.join(tokens[0][0])

player = player_for(asource)

print("Playing original signal (with leading and trailing silence)...")

(continues on next page)

3.2. auditok API Tutorial 23

auditok Documentation, Release 0.1.5

(continued from previous page)

player.play(original_signal)
print("Playing trimmed signal...")
player.play(trimmed_signal)

Online audio signal processing

In the next example, audio data is directly acquired from the built-in microphone. The auditok.core.
StreamTokenizer.tokenize() method is passed a callback function so that audio activities are delivered as
soon as they are detected. Each detected activity is played back using the build-in audio output device.

As mentioned before , Signal energy is strongly related to many factors such microphone sensitivity, background
noise (including noise inherent to the hardware), distance and your operating system sound settings. Try a lower
energy_threshold if your noise does not seem to be detected and a higher threshold if you notice an over detection
(echo method prints a detection where you have made no noise).

from auditok import ADSFactory, AudioEnergyValidator, StreamTokenizer, player_for

record = True so that we'll be able to rewind the source.
max_time = 10: read 10 seconds from the microphone
asource = ADSFactory.ads(record=True, max_time=10)

validator = AudioEnergyValidator(sample_width=asource.get_sample_width(), energy_
→˓threshold=50)
tokenizer = StreamTokenizer(validator=validator, min_length=20, max_length=250, max_
→˓continuous_silence=30)

player = player_for(asource)

def echo(data, start, end):
print("Acoustic activity at: {0}--{1}".format(start, end))
player.play(''.join(data))

asource.open()

tokenizer.tokenize(asource, callback=echo)

If you want to re-run the tokenizer after changing of one or many parameters, use the following code:

asource.rewind()
change energy threshold for example
tokenizer.validator.set_energy_threshold(55)
tokenizer.tokenize(asource, callback=echo)

In case you want to play the whole recorded signal back use:

player.play(asource.get_audio_source().get_data_buffer())

3.2.4 Contributing

auditok is on GitHub. You’re welcome to fork it and contribute.

Amine SEHILI <amine.sehili@gmail.com> September 2015

24 Chapter 3. Getting started

https://github.com/amsehili/auditok
mailto:amine.sehili@gmail.com

auditok Documentation, Release 0.1.5

3.2.5 License

This package is published under GNU GPL Version 3.

3.2. auditok API Tutorial 25

auditok Documentation, Release 0.1.5

26 Chapter 3. Getting started

CHAPTER 4

API Reference

4.1 auditok.core

This module gathers processing (i.e. tokenization) classes.

4.1.1 Class summary

StreamTokenizer(validator, min_length, . . .) Class for stream tokenizers.

class auditok.core.StreamTokenizer(validator, min_length, max_length,
max_continuous_silence, init_min=0, init_max_silence=0,
mode=0)

Class for stream tokenizers. It implements a 4-state automaton scheme to extract sub-sequences of interest on
the fly.

Parameters

validator : instance of DataValidator that implements is_valid method.

min_length [(int)] Minimum number of frames of a valid token. This includes all tolerated non
valid frames within the token.

max_length [(int)] Maximum number of frames of a valid token. This includes all tolerated
non valid frames within the token.

max_continuous_silence [(int)] Maximum number of consecutive non-valid frames within a
token. Note that, within a valid token, there may be many tolerated silent regions that
contain each a number of non valid frames up to max_continuous_silence

init_min [(int, default=0)] Minimum number of consecutive valid frames that must be initially
gathered before any sequence of non valid frames can be tolerated. This option is not always
needed, it can be used to drop non-valid tokens as early as possible. Default = 0 means that
the option is by default ineffective.

27

auditok Documentation, Release 0.1.5

init_max_silence [(int, default=0)] Maximum number of tolerated consecutive non-valid
frames if the number already gathered valid frames has not yet reached ‘init_min’. This
argument is normally used if init_min is used. Default = 0, by default this argument is not
taken into consideration.

mode [(int, default=0)] mode can be:

1. StreamTokenizer.STRICT_MIN_LENGTH: if token i is delivered because max_length is
reached, and token i+1 is immediately adjacent to token i (i.e. token i ends at frame k and
token i+1 starts at frame k+1) then accept token i+1 only of it has a size of at least min_length.
The default behavior is to accept token i+1 event if it is shorter than min_length (given that the
above conditions are fulfilled of course).

Examples

In the following code, without STRICT_MIN_LENGTH, the ‘BB’ token is accepted although it
is shorter than min_length (3), because it immediately follows the latest delivered token:

from auditok import StreamTokenizer, StringDataSource, DataValidator

class UpperCaseChecker(DataValidator):
def is_valid(self, frame):

return frame.isupper()

dsource = StringDataSource("aaaAAAABBbbb")
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),

min_length=3,
max_length=4,
max_continuous_silence=0)

tokenizer.tokenize(dsource)

output

[(['A', 'A', 'A', 'A'], 3, 6), (['B', 'B'], 7, 8)]

The following tokenizer will however reject the ‘BB’ token:

dsource = StringDataSource("aaaAAAABBbbb")
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),

min_length=3, max_length=4,
max_continuous_silence=0,
mode=StreamTokenizer.STRICT_MIN_LENGTH)

tokenizer.tokenize(dsource)

output

[(['A', 'A', 'A', 'A'], 3, 6)]

2. StreamTokenizer.DROP_TRAILING_SILENCE: drop all tailing non-valid frames from a token
to be delivered if and only if it is not truncated. This can be a bit tricky. A token is actually
delivered if:

• a. max_continuous_silence is reached

or

28 Chapter 4. API Reference

auditok Documentation, Release 0.1.5

• b. Its length reaches max_length. This is called a truncated token

In the current implementation, a StreamTokenizer’s decision is only based on already seen
data and on incoming data. Thus, if a token is truncated at a non-valid but tolerated
frame (max_length is reached but max_continuous_silence not yet) any tailing silence will
be kept because it can potentially be part of valid token (if max_length was bigger). But if
max_continuous_silence is reached before max_length, the delivered token will not be consid-
ered as truncated but a result of normal end of detection (i.e. no more valid data). In that case
the tailing silence can be removed if you use the StreamTokenizer.DROP_TRAILING_SILENCE
mode.

Example

tokenizer = StreamTokenizer(validator=UpperCaseChecker(), min_
→˓length=3,

max_length=6, max_continuous_silence=3,
mode=StreamTokenizer.DROP_TRAILING_

→˓SILENCE)

dsource = StringDataSource("aaaAAAaaaBBbbbb")
tokenizer.tokenize(dsource)

output

[(['A', 'A', 'A', 'a', 'a', 'a'], 3, 8), (['B', 'B'], 9, 10)]

The first token is delivered with its tailing silence because it is truncated while the second one
has its tailing frames removed.

Without StreamTokenizer.DROP_TRAILING_SILENCE the output would be:

[(['A', 'A', 'A', 'a', 'a', 'a'], 3, 8), (['B', 'B', 'b', 'b', 'b'],
→˓9, 13)]

3. StreamTokenizer.STRICT_MIN_LENGTH | StreamTokenizer.DROP_TRAILING_SILENCE:
use both options. That means: first remove tailing silence, then ckeck if the token still has at
least a length of min_length.

get_mode()
Return the current mode. To check whether a specific mode is activated use the bitwise ‘and’ operator &.
Example:

if mode & self.STRICT_MIN_LENGTH != 0:
do_something()

set_mode(mode)

Parameters

mode [(int)] New mode, must be one of:

• StreamTokenizer.STRICT_MIN_LENGTH

• StreamTokenizer.DROP_TRAILING_SILENCE

• StreamTokenizer.STRICT_MIN_LENGTH | StreamTok-
enizer.DROP_TRAILING_SILENCE

• 0

4.1. auditok.core 29

auditok Documentation, Release 0.1.5

See StreamTokenizer.__init__ for more information about the mode.

tokenize(data_source, callback=None)
Read data from data_source, one frame a time, and process the read frames in order to detect sequences
of frames that make up valid tokens.

Parameters

data_source [instance of the DataSource class that implements a read method.] ‘read’
should return a slice of signal, i.e. frame (of whatever type as long as it can be processed
by validator) and None if there is no more signal.

callback [an optional 3-argument function.] If a callback function is given, it will be called
each time a valid token is found.

Returns A list of tokens if callback is None. Each token is tuple with the following elements:

where data is a list of read frames, start: index of the first frame in the original data and end
: index of the last frame.

4.2 auditok.util

4.2.1 Class summary

DataSource Base class for objects passed to auditok.core.
StreamTokenizer.tokenize().

StringDataSource(data) A class that represent a DataSource as a string buffer.
ADSFactory Factory class that makes it easy to create an

ADSFactory.AudioDataSource object that
implements DataSource and can therefore be
passed to auditok.core.StreamTokenizer.
tokenize().

ADSFactory.AudioDataSource(audio_source,
. . .)

Base class for AudioDataSource objects.

ADSFactory.ADSDecorator(ads) Base decorator class for AudioDataSource objects.
ADSFactory.OverlapADS(ads, hop_size) A class for AudioDataSource objects that can read and

return overlapping audio frames
ADSFactory.LimiterADS(ads, max_time) A class for AudioDataSource objects that can read a

fixed amount of data.
ADSFactory.RecorderADS(ads) A class for AudioDataSource objects that can record all

audio data they read, with a rewind facility.
DataValidator Base class for a validator object used by core.

StreamTokenizer to check if read data is valid.
AudioEnergyValidator(sample_width[, . . .]) The most basic auditok audio frame validator.

class auditok.util.DataSource
Base class for objects passed to auditok.core.StreamTokenizer.tokenize(). Subclasses should
implement a DataSource.read() method.

read()
Read a piece of data read from this source. If no more data is available, return None.

class auditok.util.DataValidator

30 Chapter 4. API Reference

auditok Documentation, Release 0.1.5

Base class for a validator object used by core.StreamTokenizer to check if read data is valid. Subclasses
should implement is_valid() method.

is_valid(data)
Check whether data is valid

class auditok.util.StringDataSource(data)
A class that represent a DataSource as a string buffer. Each call to DataSource.read() returns on
character and moves one step forward. If the end of the buffer is reached, read() returns None.

Parameters

data [] a basestring object.

read()
Read one character from buffer.

Returns Current character or None if end of buffer is reached

set_data(data)
Set a new data buffer.

Parameters

data [a basestring object] New data buffer.

class auditok.util.ADSFactory
Factory class that makes it easy to create an ADSFactory.AudioDataSource object that implements
DataSource and can therefore be passed to auditok.core.StreamTokenizer.tokenize().

Whether you read audio data from a file, the microphone or a memory buffer, this factory instantiates and returns
the right ADSFactory.AudioDataSource object.

There are many other features you want your ADSFactory.AudioDataSource object to have, such as:
memorize all read audio data so that you can rewind and reuse it (especially useful when reading data from the
microphone), read a fixed amount of data (also useful when reading from the microphone), read overlapping
audio frames (often needed when dosing a spectral analysis of data).

ADSFactory.ads() automatically creates and return object with the desired behavior according to the sup-
plied keyword arguments.

class ADSDecorator(ads)
Base decorator class for AudioDataSource objects.

class AudioDataSource(audio_source, block_size)
Base class for AudioDataSource objects. It inherits from DataSource and encapsulates an AudioSource
object.

read()
Read a piece of data read from this source. If no more data is available, return None.

class LimiterADS(ads, max_time)
A class for AudioDataSource objects that can read a fixed amount of data. This can be useful when reading
data from the microphone or from large audio files.

read()
Read a piece of data read from this source. If no more data is available, return None.

class OverlapADS(ads, hop_size)
A class for AudioDataSource objects that can read and return overlapping audio frames

read()
Read a piece of data read from this source. If no more data is available, return None.

4.2. auditok.util 31

auditok Documentation, Release 0.1.5

class RecorderADS(ads)
A class for AudioDataSource objects that can record all audio data they read, with a rewind facility.

read()
Read a piece of data read from this source. If no more data is available, return None.

static ads(**kwargs)
Create an return an ADSFactory.AudioDataSource. The type and behavior of the object is the
result of the supplied parameters.

Parameters

No parameters [] read audio data from the available built-in microphone with the default parameters. The
returned ADSFactory.AudioDataSource encapsulate an io.PyAudioSource object and
hence it accepts the next four parameters are passed to use instead of their default values.

sampling_rate, sr [(int)] number of samples per second. Default = 16000.

sample_width, sw [(int)] number of bytes per sample (must be in (1, 2, 4)). Default = 2

channels, ch [(int)] number of audio channels. Default = 1 (only this value is currently accepted)

frames_per_buffer, fpb [(int)] number of samples of PyAudio buffer. Default = 1024.

audio_source, asrc [an AudioSource object] read data from this audio source

filename, fn [(string)] build an io.AudioSource object using this file (currently only wave format is sup-
ported)

data_buffer, db [(string)] build an io.BufferAudioSource using data in data_buffer. If this keyword is
used, sampling_rate, sample_width and channels are passed to io.BufferAudioSource constructor and
used instead of default values.

max_time, mt [(float)] maximum time (in seconds) to read. Default behavior: read until there is no more
data available.

record, rec [(bool)] save all read data in cache. Provide a navigable object which boasts a rewind method.
Default = False.

block_dur, bd [(float)] processing block duration in seconds. This represents the quantity of audio data to
return each time the read() method is invoked. If block_dur is 0.025 (i.e. 25 ms) and the sampling
rate is 8000 and the sample width is 2 bytes, read() returns a buffer of 0.025 * 8000 * 2 = 400
bytes at most. This parameter will be looked for (and used if available) before block_size. If neither
parameter is given, block_dur will be set to 0.01 second (i.e. 10 ms)

hop_dur, hd [(float)] quantity of data to skip from current processing window. if hop_dur is supplied then
there will be an overlap of block_dur - hop_dur between two adjacent blocks. This parameter will be
looked for (and used if available) before hop_size. If neither parameter is given, hop_dur will be set
to block_dur which means that there will be no overlap between two consecutively read blocks.

block_size, bs [(int)] number of samples to read each time the read method is called. Default: a block
size that represents a window of 10ms, so for a sampling rate of 16000, the default block_size is 160
samples, for a rate of 44100, block_size = 441 samples, etc.

hop_size, hs [(int)] determines the number of overlapping samples between two adjacent read windows.
For a hop_size of value N, the overlap is block_size - N. Default : hop_size = block_size, means that
there is no overlap.

Returns

An AudioDataSource object that has the desired features.

32 Chapter 4. API Reference

auditok Documentation, Release 0.1.5

Exampels

1. Create an AudioDataSource that reads data from the microphone (requires Pyaudio) with de-
fault audio parameters:

from auditok import ADSFactory
ads = ADSFactory.ads()
ads.get_sampling_rate()
16000
ads.get_sample_width()
2
ads.get_channels()
1

2. Create an AudioDataSource that reads data from the microphone with a sampling rate of
48KHz:

from auditok import ADSFactory
ads = ADSFactory.ads(sr=48000)
ads.get_sampling_rate()
48000

3. Create an AudioDataSource that reads data from a wave file:

import auditok
from auditok import ADSFactory
ads = ADSFactory.ads(fn=auditok.dataset.was_der_mensch_saet_mono_44100_lead_
→˓trail_silence)
ads.get_sampling_rate()
44100
ads.get_sample_width()
2
ads.get_channels()
1

4. Define size of read blocks as 20 ms

import auditok
from auditok import ADSFactory
'''
we know samling rate for previous file is 44100 samples/second
so 10 ms are equivalent to 441 samples and 20 ms to 882
'''
block_size = 882
ads = ADSFactory.ads(bs = 882, fn=auditok.dataset.was_der_mensch_saet_mono_
→˓44100_lead_trail_silence)
ads.open()
read one block
data = ads.read()
ads.close()
len(data)
1764
assert len(data) == ads.get_sample_width() * block_size

4.2. auditok.util 33

auditok Documentation, Release 0.1.5

5. Define block size as a duration (use block_dur or bd):

import auditok
from auditok import ADSFactory
dur = 0.25 # second
ads = ADSFactory.ads(bd = dur, fn=auditok.dataset.was_der_mensch_saet_mono_
→˓44100_lead_trail_silence)
'''
we know samling rate for previous file is 44100 samples/second
for a block duration of 250 ms, block size should be 0.25 * 44100 = 11025
'''
ads.get_block_size()
11025
assert ads.get_block_size() == int(0.25 * 44100)
ads.open()
read one block
data = ads.read()
ads.close()
len(data)
22050
assert len(data) == ads.get_sample_width() * ads.get_block_size()

6. Read overlapping blocks (one of hope_size, hs, hop_dur or hd > 0):

For better readability we’d better use auditok.io.BufferAudioSource with a string buffer:

import auditok
from auditok import ADSFactory
'''
we supply a data beffer instead of a file (keyword 'bata_buffer' or 'db')
sr : sampling rate = 16 samples/sec
sw : sample width = 1 byte
ch : channels = 1
'''
buffer = "abcdefghijklmnop" # 16 bytes = 1 second of data
bd = 0.250 # block duration = 250 ms = 4 bytes
hd = 0.125 # hop duration = 125 ms = 2 bytes
ads = ADSFactory.ads(db = "abcdefghijklmnop", bd = bd, hd = hd, sr = 16, sw =
→˓1, ch = 1)
ads.open()
ads.read()
'abcd'
ads.read()
'cdef'
ads.read()
'efgh'
ads.read()
'ghij'
data = ads.read()
assert data == 'ijkl'

7. Limit amount of read data (use max_time or mt):

'''
We know audio file is larger than 2.25 seconds
We want to read up to 2.25 seconds of audio data

(continues on next page)

34 Chapter 4. API Reference

auditok Documentation, Release 0.1.5

(continued from previous page)

'''
ads = ADSFactory.ads(mt = 2.25, fn=auditok.dataset.was_der_mensch_saet_mono_
→˓44100_lead_trail_silence)
ads.open()
data = []
while True:

d = ads.read()
if d is None:

break
data.append(d)

ads.close()
data = b''.join(data)
assert len(data) == int(ads.get_sampling_rate() * 2.25 * ads.get_sample_
→˓width() * ads.get_channels())

class auditok.util.AudioEnergyValidator(sample_width, energy_threshold=45)
The most basic auditok audio frame validator. This validator computes the log energy of an input audio frame
and return True if the result is >= a given threshold, False otherwise.

Parameters

sample_width [(int)] Number of bytes of one audio sample. This is used to convert data from basestring or
Bytes to an array of floats.

energy_threshold [(float)] A threshold used to check whether an input data buffer is valid.

is_valid(data)
Check if data is valid. Audio data will be converted into an array (of signed values) of which the log energy
is computed. Log energy is computed as follows:

arr = AudioEnergyValidator._convert(signal, sample_width)
energy = float(numpy.dot(arr, arr)) / len(arr)
log_energy = 10. * numpy.log10(energy)

Parameters

data [either a string or a Bytes buffer] data is converted into a numerical array using the sample_width
given in the constructor.

Returns

True if log_energy >= energy_threshold, False otherwise.

4.3 auditok.io

Module for low-level audio input-output operations.

4.3.1 Class summary

4.3. auditok.io 35

auditok Documentation, Release 0.1.5

AudioSource([sampling_rate, sample_width, . . .]) Base class for audio source objects.
Rewindable Base class for rewindable audio streams.
BufferAudioSource(data_buffer[, . . .]) An AudioSource that encapsulates and reads data

from a memory buffer.
WaveAudioSource(filename) A class for an AudioSource that reads data from a wave

file.
PyAudioSource([sampling_rate, sample_width,
. . .])

A class for an AudioSource that reads data the built-in
microphone using PyAudio.

StdinAudioSource([sampling_rate, . . .]) A class for an AudioSource that reads data from
standard input.

PyAudioPlayer([sampling_rate, sample_width,
. . .])

A class for audio playback using Pyaudio

4.3.2 Function summary

from_file(filename) Create an AudioSource object using the audio file spec-
ified by filename.

player_for(audio_source) Return a PyAudioPlayer that can play data from au-
dio_source.

class auditok.io.AudioSource(sampling_rate=16000, sample_width=2, channels=1)
Base class for audio source objects.

Subclasses should implement methods to open/close and audio stream and read the desired amount of audio
samples.

Parameters

sampling_rate [int] Number of samples per second of audio stream. Default = 16000.

sample_width [int] Size in bytes of one audio sample. Possible values : 1, 2, 4. Default = 2.

channels [int] Number of channels of audio stream. The current version supports only mono
audio streams (i.e. one channel).

ch
Return the number of channels of this audio source

channels
Number of channels of this audio source

close()
Close audio source

get_channels()
Return the number of channels of this audio source

get_sample_width()
Return the number of bytes used to represent one audio sample

get_sampling_rate()
Return the number of samples per second of audio stream

is_open()
Return True if audio source is open, False otherwise

open()
Open audio source

36 Chapter 4. API Reference

auditok Documentation, Release 0.1.5

read(size)
Read and return size audio samples at most.

Parameters

size [int] the number of samples to read.

Returns Audio data as a string of length ‘N’ * ‘sample_width’ * ‘channels’, where ‘N’ is:

• size if size < ‘left_samples’

• ‘left_samples’ if size > ‘left_samples’

sample_width
Number of bytes used to represent one audio sample

sampling_rate
Number of samples per second of audio stream

sr
Number of samples per second of audio stream

sw
Number of bytes used to represent one audio sample

class auditok.io.Rewindable
Base class for rewindable audio streams. Subclasses should implement methods to return to the beginning of an
audio stream as well as method to move to an absolute audio position expressed in time or in number of samples.

get_position()
Return the total number of already read samples

get_time_position()
Return the total duration in seconds of already read data

rewind()
Go back to the beginning of audio stream

set_position(position)
Move to an absolute position

Parameters

position [int] number of samples to skip from the start of the stream

set_time_position(time_position)
Move to an absolute position expressed in seconds

Parameters

time_position [float] seconds to skip from the start of the stream

class auditok.io.BufferAudioSource(data_buffer, sampling_rate=16000, sample_width=2,
channels=1)

An AudioSource that encapsulates and reads data from a memory buffer. It implements methods from
Rewindable and is therefore a navigable AudioSource.

append_data(data_buffer)
Append data to this audio stream

Parameters

data_buffer [str, basestring, Bytes] a buffer with a length multiple of (sample_width * chan-
nels)

4.3. auditok.io 37

auditok Documentation, Release 0.1.5

close()
Close audio source

get_data_buffer()
Return all audio data as one string buffer.

get_position()
Return the total number of already read samples

get_time_position()
Return the total duration in seconds of already read data

is_open()
Return True if audio source is open, False otherwise

open()
Open audio source

read(size)
Read and return size audio samples at most.

Parameters

size [int] the number of samples to read.

Returns Audio data as a string of length ‘N’ * ‘sample_width’ * ‘channels’, where ‘N’ is:

• size if size < ‘left_samples’

• ‘left_samples’ if size > ‘left_samples’

rewind()
Go back to the beginning of audio stream

set_data(data_buffer)
Set new data for this audio stream.

Parameters

data_buffer [str, basestring, Bytes] a string buffer with a length multiple of (sample_width
* channels)

set_position(position)
Move to an absolute position

Parameters

position [int] number of samples to skip from the start of the stream

set_time_position(time_position)
Move to an absolute position expressed in seconds

Parameters

time_position [float] seconds to skip from the start of the stream

class auditok.io.WaveAudioSource(filename)
A class for an AudioSource that reads data from a wave file.

Parameters

filename : path to a valid wave file

close()
Close audio source

38 Chapter 4. API Reference

auditok Documentation, Release 0.1.5

is_open()
Return True if audio source is open, False otherwise

open()
Open audio source

read(size)
Read and return size audio samples at most.

Parameters

size [int] the number of samples to read.

Returns Audio data as a string of length ‘N’ * ‘sample_width’ * ‘channels’, where ‘N’ is:

• size if size < ‘left_samples’

• ‘left_samples’ if size > ‘left_samples’

class auditok.io.PyAudioSource(sampling_rate=16000, sample_width=2, channels=1,
frames_per_buffer=1024)

A class for an AudioSource that reads data the built-in microphone using PyAudio.

close()
Close audio source

is_open()
Return True if audio source is open, False otherwise

open()
Open audio source

read(size)
Read and return size audio samples at most.

Parameters

size [int] the number of samples to read.

Returns Audio data as a string of length ‘N’ * ‘sample_width’ * ‘channels’, where ‘N’ is:

• size if size < ‘left_samples’

• ‘left_samples’ if size > ‘left_samples’

class auditok.io.StdinAudioSource(sampling_rate=16000, sample_width=2, channels=1)
A class for an AudioSource that reads data from standard input.

close()
Close audio source

is_open()
Return True if audio source is open, False otherwise

open()
Open audio source

read(size)
Read and return size audio samples at most.

Parameters

size [int] the number of samples to read.

Returns Audio data as a string of length ‘N’ * ‘sample_width’ * ‘channels’, where ‘N’ is:

• size if size < ‘left_samples’

4.3. auditok.io 39

auditok Documentation, Release 0.1.5

• ‘left_samples’ if size > ‘left_samples’

class auditok.io.PyAudioPlayer(sampling_rate=16000, sample_width=2, channels=1)
A class for audio playback using Pyaudio

auditok.io.from_file(filename)
Create an AudioSource object using the audio file specified by filename. The appropriate AudioSource class
is guessed from file’s extension.

Parameters

filename : path to an audio file.

Returns an AudioSource object that reads data from the given file.

auditok.io.player_for(audio_source)
Return a PyAudioPlayer that can play data from audio_source.

Parameters

audio_source [] an AudioSource object.

Returns PyAudioPlayer that has the same sampling rate, sample width and number of channels as
audio_source.

4.4 auditok.dataset

This module contains links to audio files you can use for test purposes.

auditok.dataset.one_to_six_arabic_16000_mono_bc_noise = '/home/docs/checkouts/readthedocs.org/user_builds/auditok/envs/v0.1.7/lib/python2.7/site-packages/auditok-0.1.7-py2.7.egg/auditok/data/1to6arabic_16000_mono_bc_noise.wav'
A wave file that contains a pronunciation of Arabic numbers from 1 to 6

auditok.dataset.was_der_mensch_saet_mono_44100_lead_trail_silence = '/home/docs/checkouts/readthedocs.org/user_builds/auditok/envs/v0.1.7/lib/python2.7/site-packages/auditok-0.1.7-py2.7.egg/auditok/data/was_der_mensch_saet_das_wird_er_vielfach_ernten_44100Hz_mono_lead_trail_silence.wav'
A wave file that contains a sentence between long leading and trailing periods of silence

40 Chapter 4. API Reference

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

41

auditok Documentation, Release 0.1.5

42 Chapter 5. Indices and tables

Python Module Index

a
auditok.core, 27
auditok.dataset, 40
auditok.io, 35
auditok.util, 30

43

auditok Documentation, Release 0.1.5

44 Python Module Index

Index

A
ads() (auditok.util.ADSFactory static method), 32
ADSFactory (class in auditok.util), 31
ADSFactory.ADSDecorator (class in auditok.util),

31
ADSFactory.AudioDataSource (class in audi-

tok.util), 31
ADSFactory.LimiterADS (class in auditok.util), 31
ADSFactory.OverlapADS (class in auditok.util), 31
ADSFactory.RecorderADS (class in auditok.util),

31
append_data() (auditok.io.BufferAudioSource

method), 37
AudioEnergyValidator (class in auditok.util), 35
AudioSource (class in auditok.io), 36
auditok.core (module), 27
auditok.dataset (module), 40
auditok.io (module), 35
auditok.util (module), 30

B
BufferAudioSource (class in auditok.io), 37

C
ch (auditok.io.AudioSource attribute), 36
channels (auditok.io.AudioSource attribute), 36
close() (auditok.io.AudioSource method), 36
close() (auditok.io.BufferAudioSource method), 37
close() (auditok.io.PyAudioSource method), 39
close() (auditok.io.StdinAudioSource method), 39
close() (auditok.io.WaveAudioSource method), 38

D
DataSource (class in auditok.util), 30
DataValidator (class in auditok.util), 30

F
from_file() (in module auditok.io), 40

G
get_channels() (auditok.io.AudioSource method),

36
get_data_buffer() (auditok.io.BufferAudioSource

method), 38
get_mode() (auditok.core.StreamTokenizer method),

29
get_position() (auditok.io.BufferAudioSource

method), 38
get_position() (auditok.io.Rewindable method), 37
get_sample_width() (auditok.io.AudioSource

method), 36
get_sampling_rate() (auditok.io.AudioSource

method), 36
get_time_position() (audi-

tok.io.BufferAudioSource method), 38
get_time_position() (auditok.io.Rewindable

method), 37

I
is_open() (auditok.io.AudioSource method), 36
is_open() (auditok.io.BufferAudioSource method), 38
is_open() (auditok.io.PyAudioSource method), 39
is_open() (auditok.io.StdinAudioSource method), 39
is_open() (auditok.io.WaveAudioSource method), 38
is_valid() (auditok.util.AudioEnergyValidator

method), 35
is_valid() (auditok.util.DataValidator method), 31

O
one_to_six_arabic_16000_mono_bc_noise

(in module auditok.dataset), 40
open() (auditok.io.AudioSource method), 36
open() (auditok.io.BufferAudioSource method), 38
open() (auditok.io.PyAudioSource method), 39
open() (auditok.io.StdinAudioSource method), 39
open() (auditok.io.WaveAudioSource method), 39

P
player_for() (in module auditok.io), 40

45

auditok Documentation, Release 0.1.5

PyAudioPlayer (class in auditok.io), 40
PyAudioSource (class in auditok.io), 39

R
read() (auditok.io.AudioSource method), 36
read() (auditok.io.BufferAudioSource method), 38
read() (auditok.io.PyAudioSource method), 39
read() (auditok.io.StdinAudioSource method), 39
read() (auditok.io.WaveAudioSource method), 39
read() (auditok.util.ADSFactory.AudioDataSource

method), 31
read() (auditok.util.ADSFactory.LimiterADS method),

31
read() (auditok.util.ADSFactory.OverlapADS method),

31
read() (auditok.util.ADSFactory.RecorderADS

method), 32
read() (auditok.util.DataSource method), 30
read() (auditok.util.StringDataSource method), 31
rewind() (auditok.io.BufferAudioSource method), 38
rewind() (auditok.io.Rewindable method), 37
Rewindable (class in auditok.io), 37

S
sample_width (auditok.io.AudioSource attribute), 37
sampling_rate (auditok.io.AudioSource attribute),

37
set_data() (auditok.io.BufferAudioSource method),

38
set_data() (auditok.util.StringDataSource method),

31
set_mode() (auditok.core.StreamTokenizer method),

29
set_position() (auditok.io.BufferAudioSource

method), 38
set_position() (auditok.io.Rewindable method), 37
set_time_position() (audi-

tok.io.BufferAudioSource method), 38
set_time_position() (auditok.io.Rewindable

method), 37
sr (auditok.io.AudioSource attribute), 37
StdinAudioSource (class in auditok.io), 39
StreamTokenizer (class in auditok.core), 27
StringDataSource (class in auditok.util), 31
sw (auditok.io.AudioSource attribute), 37

T
tokenize() (auditok.core.StreamTokenizer method),

30

W
was_der_mensch_saet_mono_44100_lead_trail_silence

(in module auditok.dataset), 40
WaveAudioSource (class in auditok.io), 38

46 Index

	Requirements
	Installation
	Getting started
	auditok Command-line Usage Guide
	auditok API Tutorial

	API Reference
	auditok.core
	auditok.util
	auditok.io
	auditok.dataset

	Indices and tables
	Python Module Index
	Index

