

auditok, an AUDIo TOKenization tool

[image: _images/auditok.svg]
 [https://travis-ci.org/amsehili/auditok][image: Documentation Status]
 [http://auditok.readthedocs.org/en/latest/?badge=latest]auditok is an Audio Activity Detection tool that can process online data (read from an audio device or from standard input) as well as audio files. It can be used as a command line program and offers an easy to use API.

The latest version of this documentation can be found at Readthedocs [http://auditok.readthedocs.org/en/latest/].

Requirements

auditok can be used with standard Python!

However, if you want more features, the following packages are needed:

	Pydub [https://github.com/jiaaro/pydub] : read audio files in popular audio formats (ogg, mp3, etc.) or extract audio from a video file.

	PyAudio [http://people.csail.mit.edu/hubert/pyaudio/] : read audio data from the microphone and play back detections.

	matplotlib [http://matplotlib.org/] : plot audio signal and detections (see figures above).

	numpy [http://www.numpy.org] : required by matplotlib. Also used for math operations instead of standard python if available.

	Optionally, you can use sox or [p]arecord for data acquisition and feed auditok using a pipe.

Installation

Install with pip:

sudo pip install auditok

or install the latest version on Github:

git clone https://github.com/amsehili/auditok.git
cd auditok
sudo python setup.py install

Getting started

	 Command-line Usage Guide

	 API Tutorial

API Reference

	 auditok.core
	Class summary

	 auditok.util
	Class summary

	 auditok.io
	Class summary

	Function summary

	 auditok.dataset

Indices and tables

	Index

	Module Index

	Search Page

auditok Command-line Usage Guide

This user guide will go through a few of the most useful operations you can use auditok for and present two practical use cases.

Contents

	auditok Command-line Usage Guide

	Two-figure explanation

	Command line usage

	Try the detector with your voice

	Play back detections

	Set detection threshold

	Set format for printed detections information

	1st Practical use case example: generate a subtitles template

	2nd Practical use case example: build a (very) basic voice control application

	Plot signal and detections

	Save plot as image or PDF

	Read data from file

	Limit the length of acquired data

	Save the whole acquired audio signal

	Save each detection into a separate audio file

	Setting detection parameters

	Debugging

	License

	Author

Two-figure explanation

The following two figures illustrate an audio signal (blue) and regions detected as valid audio activities (green rectangles) according to
a given threshold (red dashed line). They respectively depict the detection result when:

	the detector tolerates phases of silence of up to 0.3 second (300 ms) within an audio activity (also referred to as acoustic event):

[image: Output from a detector that tolerates silence periods up to 300 ms]

	the detector splits an audio activity event into many activities if the within activity silence is over 0.2 second:

[image: Output from a detector that tolerates silence periods up to 200 ms]

Beyond plotting signal and detections, you can play back audio activities as they are detected, save them or run a user command each time there is an activity,
using, optionally, the file name of audio activity as an argument for the command.

Command line usage

Try the detector with your voice

The first thing you want to check is perhaps how auditok detects your voice. If you have installed PyAudio just run (Ctrl-C to stop):

auditok

This will print id start-time and end-time for each detected activity. If you don’t have PyAudio, you can use sox for data acquisition (sudo apt-get install sox) and tell auditok to read data from standard input:

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -i - -r 16000 -w 2 -c 1

Note that when data is read from standard input the same audio parameters must be used for both sox (or any other data generation/acquisition tool) and auditok. The following table summarizes audio parameters.

	Audio parameter

	sox option

	auditok option

	auditok default

	Sampling rate

	-r

	-r

	16000

	Sample width

	-b (bits)

	-w (bytes)

	2

	Channels

	-c

	-c

	1

	Encoding

	-e

	None

	always signed integer

According to this table, the previous command can be run as:

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -i -

Play back detections

auditok -E

	or

	

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -i - -E

Option -E stands for echo, so auditok will play back whatever it detects. Using -E requires PyAudio, if you don’t have PyAudio and want to play detections with sox, use the -C option:

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -i - -C "play -q -t raw -r 16000 -c 1 -b 16 -e signed $"

The -C option tells auditok to interpret its content as a command that should be run whenever auditok detects an audio activity, replacing the $ by a name of a temporary file into which the activity is saved as raw audio. Here we use play to play the activity, giving the necessary play arguments for raw data.

rec and play are just an alias for sox.

The -C option can be useful in many cases. Imagine a command that sends audio data over a network only if there is an audio activity and saves bandwidth during silence.

Set detection threshold

If you notice that there are too many detections, use a higher value for energy threshold (the current version only implements a validator based on energy threshold. The use of spectral information is also desirable and might be part of future releases). To change the energy threshold (default: 50), use option -e:

auditok -E -e 55

	or

	

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -i - -e 55 -C "play -q -t raw -r 16000 -c 1 -b 16 -e signed $"

If however you figure out that the detector is missing some of or all your audio activities, use a lower value for -e.

Set format for printed detections information

By default, auditok prints the id, start-time and end-time of each detected activity:

1 1.87 2.67
2 3.05 3.73
3 3.97 4.49
...

If you want to customize the output format, use –printf option:

auditok -e 55 --printf "[{id}]: {start} to {end}"

	output

	

[1]: 0.22 to 0.67
[2]: 2.81 to 4.18
[3]: 5.53 to 6.44
[4]: 7.32 to 7.82
...

Keywords {id}, {start} and {end} can be placed and repeated anywhere in the text. Time is shown in seconds, if you want a more detailed time information, use –time-format:

auditok -e 55 –printf “[{id}]: {start} to {end}” –time-format “%h:%m:%s.%i”

	output

	

[1]: 00:00:01.080 to 00:00:01.760
[2]: 00:00:02.420 to 00:00:03.440
[3]: 00:00:04.930 to 00:00:05.570
[4]: 00:00:05.690 to 00:00:06.020
[5]: 00:00:07.470 to 00:00:07.980
...

Valid time directives are: %h (hours) %m (minutes) %s (seconds) %i (milliseconds). Two other directives, %S (default) and %I can be used for absolute time in seconds and milliseconds respectively.

1st Practical use case example: generate a subtitles template

Using –printf ` and `–time-format, the following command, used with an input audio or video file, will generate and an srt file template that can be later edited with a subtitles editor in a way that reduces the time needed to define when each utterance starts and where it ends:

auditok -e 55 -i input.wav -m 10 --printf "{id}\n{start} --> {end}\nPut some text here...\n" --time-format "%h:%m:%s.%i"

	output

	

1
00:00:00.730 --> 00:00:01.460
Put some text here...

2
00:00:02.440 --> 00:00:03.900
Put some text here...

3
00:00:06.410 --> 00:00:06.970
Put some text here...

4
00:00:07.260 --> 00:00:08.340
Put some text here...

5
00:00:09.510 --> 00:00:09.820
Put some text here...

2nd Practical use case example: build a (very) basic voice control application

This repository [https://github.com/amsehili/gspeech-rec] supplies a bash script the can send audio data to Google’s
Speech Recognition service and get its transcription. In the following we will use auditok as a lower layer component
of a voice control application. The basic idea is to tell auditok to run, for each detected audio activity, a certain
number of commands that make up the rest of our voice control application.

Assume you have installed sox and downloaded the Speech Recognition script. The sequence of commands to run is:

1- Convert raw audio data to flac using sox:

sox -t raw -r 16000 -c 1 -b 16 -e signed raw_input output.flac

2- Send flac audio data to Google and get its filtered transcription using speech-rec.sh [https://github.com/amsehili/gspeech-rec/blob/master/speech-rec.sh] :

speech-rec.sh -i output.flac -r 16000

3- Use grep to select lines that contain transcript:

grep transcript

4- Launch the following script, giving it the transcription as input:

#!/bin/bash

read line

RES=`echo "$line" | grep -i "open firefox"`

if [[$RES]]
 then
 echo "Launch command: 'firefox &' ... "
 firefox &
 exit 0
fi

exit 0

As you can see, the script can handle one single voice command. It runs firefox if the text it receives contains open firefox.
Save a script into a file named voice-control.sh (don’t forget to run a chmod u+x voice-control.sh).

Now, thanks to option -C, we will use the four instructions with a pipe and tell auditok to run them each time it detects
an audio activity. Try the following command and say open firefox:

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -M 5 -m 3 -n 1 --debug-file file.log -e 60 -C "sox -t raw -r 16000 -c 1 -b 16 -e signed $ audio.flac ; speech-rec.sh -i audio.flac -r 16000 | grep transcript | ./voice-control.sh"

Here we used option -M 5 to limit the amount of read audio data to 5 seconds (auditok stops if there are no more data) and
option -n 1 to tell auditok to only accept tokens of 1 second or more and throw any token shorter than 1 second.

With –debug-file file.log, all processing steps are written into file.log with their timestamps, including any run command and the file name the command was given.

Plot signal and detections

use option -p. Requires matplotlib and numpy.

auditok ... -p

Save plot as image or PDF

auditok ... --save-image output.png

Requires matplotlib and numpy. Accepted formats: eps, jpeg, jpg, pdf, pgf, png, ps, raw, rgba, svg, svgz, tif, tiff.

Read data from file

auditok -i input.wav ...

Install pydub for other audio formats.

Limit the length of acquired data

auditok -M 12 ...

Time is in seconds. This is valid for data read from an audio device, stdin or an audio file.

Save the whole acquired audio signal

auditok -O output.wav ...

Install pydub for other audio formats.

Save each detection into a separate audio file

auditok -o det_{N}_{start}_{end}.wav ...

You can use a free text and place {N}, {start} and {end} wherever you want, they will be replaced by detection number, start time and end time respectively. Another example:

auditok -o {start}-{end}.wav ...

Install pydub for more audio formats.

Setting detection parameters

Alongside the threshold option -e seen so far, a couple of other options can have a great impact on the detector behavior. These options are summarized in the following table:

	Option

	Description

	Unit

	Default

	-n

	Minimum length an accepted audio activity should have

	second

	0.2 (200 ms)

	-m

	Maximum length an accepted audio activity should reach

	second

	
	

	-s

	Maximum length of a continuous silence period within
an accepted audio activity

	second

	0.3 (300 ms)

	-d

	Drop trailing silence from an accepted audio activity

	boolean

	False

	-a

	Analysis window length (default value should be good)

	second

	0.01 (10 ms)

Normally, auditok does keeps trailing silence of a detected activity. Trailing silence is at most as long as maximum length of a continuous silence (option -m) and can be important for some applications such as speech recognition. If you want to drop trailing silence anyway use option -d. The following two figures show the output of the detector when it keeps the trailing silence and when it drops it respectively:

[image: Output from a detector that keeps trailing silence]

auditok ... -d

[image: Output from a detector that drop trailing silence]

You might want to only consider audio activities if they are above a certain duration. The next figure is the result of a detector that only accepts detections of 0.8 second and longer:

auditok ... -n 0.8

[image: Output from a detector that detect activities of 800 ms or over]

Finally it is almost always interesting to limit the length of detected audio activities. In any case, one does not want a too long audio event such as an alarm or a drill to hog the detector. For illustration purposes, we set the maximum duration to 0.4 second for this detector, so an audio activity is delivered as soon as it reaches 0.4 second:

auditok ... -m 0.4

[image: Output from a detector that delivers audio activities that reach 400 ms]

Debugging

If you want to print what happens when something is detected, use option -D.

auditok ... -D

If you want to save everything into a log file, use –debug-file file.log.

auditok ... --debug-file file.log

License

auditok is published under the GNU General Public License Version 3.

Author

Amine Sehili (<amine.sehili@gmail.com>)

auditok API Tutorial

Contents

	auditok API Tutorial

	Illustrative examples with strings

	Extract sub-sequences of consecutive upper case letters

	Tolerate up to two non-valid (lower case) letters within an extracted sequence

	Remove trailing silence

	Limit the length of detected tokens

	auditok and Audio Data

	Examples using real audio data

	Extract isolated phrases from an utterance

	Trim leading and trailing silence

	Online audio signal processing

	Contributing

	License

auditok is a module that can be used as a generic tool for data
tokenization. Although its core motivation is Acoustic Activity
Detection (AAD) and extraction from audio streams (i.e. detect
where a noise/an acoustic activity occurs within an audio stream and
extract the corresponding portion of signal), it can easily be
adapted to other tasks.

Globally speaking, it can be used to extract, from a sequence of
observations, all sub-sequences that meet a certain number of
criteria in terms of:

	Minimum length of a valid token (i.e. sub-sequence)

	Maximum length of a valid token

	Maximum tolerated consecutive non-valid observations within
a valid token

Examples of a non-valid observation are: a non-numeric ascii symbol
if you are interested in sub-sequences of numeric symbols, or a silent
audio window (of 10, 20 or 100 milliseconds for instance) if what
interests you are audio regions made up of a sequence of “noisy”
windows (whatever kind of noise: speech, baby cry, laughter, etc.).

The most important component of auditok is the auditok.core.StreamTokenizer
class. An instance of this class encapsulates a auditok.util.DataValidator and can be
configured to detect the desired regions from a stream.
The auditok.core.StreamTokenizer.tokenize() method accepts a auditok.util.DataSource
object that has a read method. Read data can be of any type accepted
by the validator.

As the main aim of this module is Audio Activity Detection,
it provides the auditok.util.ADSFactory factory class that makes
it very easy to create an auditok.util.ADSFactory.AudioDataSource
(a class that implements auditok.util.DataSource) object, be that from:

	A file on the disk

	A buffer of data

	The built-in microphone (requires PyAudio)

The auditok.util.ADSFactory.AudioDataSource class inherits from
auditok.util.DataSource and supplies a higher abstraction level
than auditok.io.AudioSource thanks to a bunch of handy features:

	Define a fixed-length block_size (alias bs, i.e. analysis window)

	Alternatively, use block_dur (duration in seconds, alias bd)

	Allow overlap between two consecutive analysis windows
(if one of hop_size , hs or hop_dur , hd keywords is used and is > 0 and < block_size).
This can be very important if your validator use the spectral information of audio data
instead of raw audio samples.

	Limit the amount (i.e. duration) of read data (if keyword max_time or mt is used, very useful when reading data from the microphone)

	Record all read data and rewind if necessary (if keyword record or rec , also useful if you read data from the microphone and
you want to process it many times off-line and/or save it)

See auditok.util.ADSFactory documentation for more information.

Last but not least, the current version has only one audio window validator based on
signal energy (:class:`auditok.util.AudioEnergyValidator).

Illustrative examples with strings

Let us look at some examples using the auditok.util.StringDataSource class
created for test and illustration purposes. Imagine that each character of
auditok.util.StringDataSource data represents an audio slice of 100 ms for
example. In the following examples we will use upper case letters to represent
noisy audio slices (i.e. analysis windows or frames) and lower case letter for
silent frames.

Extract sub-sequences of consecutive upper case letters

We want to extract sub-sequences of characters that have:

	A minimum length of 1 (min_length = 1)

	A maximum length of 9999 (max_length = 9999)

	Zero consecutive lower case characters within them (max_continuous_silence = 0)

We also create the UpperCaseChecker with a read method that returns True if the
checked character is in upper case and False otherwise.

from auditok import StreamTokenizer, StringDataSource, DataValidator

class UpperCaseChecker(DataValidator):
 def is_valid(self, frame):
 return frame.isupper()

dsource = StringDataSource("aaaABCDEFbbGHIJKccc")
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),
 min_length=1, max_length=9999, max_continuous_silence=0)

tokenizer.tokenize(dsource)

The output is a list of two tuples, each contains the extracted sub-sequence and its
start and end position in the original sequence respectively:

[(['A', 'B', 'C', 'D', 'E', 'F'], 3, 8), (['G', 'H', 'I', 'J', 'K'], 11, 15)]

Tolerate up to two non-valid (lower case) letters within an extracted sequence

To do so, we set max_continuous_silence =2:

from auditok import StreamTokenizer, StringDataSource, DataValidator

class UpperCaseChecker(DataValidator):
 def is_valid(self, frame):
 return frame.isupper()

dsource = StringDataSource("aaaABCDbbEFcGHIdddJKee")
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),
 min_length=1, max_length=9999, max_continuous_silence=2)

tokenizer.tokenize(dsource)

output:

[(['A', 'B', 'C', 'D', 'b', 'b', 'E', 'F', 'c', 'G', 'H', 'I', 'd', 'd'], 3, 16), (['J', 'K', 'e', 'e'], 18, 21)]

Notice the trailing lower case letters “dd” and “ee” at the end of the two
tokens. The default behavior of auditok.core.StreamTokenizer is to keep the trailing
silence if it does not exceed max_continuous_silence. This can be changed
using the StreamTokenizer.DROP_TRAILING_SILENCE mode (see next example).

Remove trailing silence

Trailing silence can be useful for many sound recognition applications, including
speech recognition. Moreover, from the human auditory system point of view, trailing
low energy signal helps removing abrupt signal cuts.

If you want to remove it anyway, you can do it by setting mode to StreamTokenizer.DROP_TRAILING_SILENCE:

from auditok import StreamTokenizer, StringDataSource, DataValidator

class UpperCaseChecker(DataValidator):
 def is_valid(self, frame):
 return frame.isupper()

dsource = StringDataSource("aaaABCDbbEFcGHIdddJKee")
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),
 min_length=1, max_length=9999, max_continuous_silence=2,
 mode=StreamTokenizer.DROP_TRAILING_SILENCE)

tokenizer.tokenize(dsource)

output:

[(['A', 'B', 'C', 'D', 'b', 'b', 'E', 'F', 'c', 'G', 'H', 'I'], 3, 14), (['J', 'K'], 18, 19)]

Limit the length of detected tokens

Imagine that you just want to detect and recognize a small part of a long
acoustic event (e.g. engine noise, water flow, etc.) and avoid that that
event hogs the tokenizer and prevent it from feeding the event to the next
processing step (i.e. a sound recognizer). You can do this by:

	limiting the length of a detected token.

and

	using a callback function as an argument to auditok.core.StreamTokenizer.tokenize
so that the tokenizer delivers a token as soon as it is detected.

The following code limits the length of a token to 5:

from auditok import StreamTokenizer, StringDataSource, DataValidator

class UpperCaseChecker(DataValidator):
 def is_valid(self, frame):
 return frame.isupper()

dsource = StringDataSource("aaaABCDEFGHIJKbbb")
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),
 min_length=1, max_length=5, max_continuous_silence=0)

def print_token(data, start, end):
 print("token = '{0}', starts at {1}, ends at {2}".format(''.join(data), start, end))

tokenizer.tokenize(dsource, callback=print_token)

output:

"token = 'ABCDE', starts at 3, ends at 7"
"token = 'FGHIJ', starts at 8, ends at 12"
"token = 'K', starts at 13, ends at 13"

auditok and Audio Data

In the rest of this document we will use auditok.util.ADSFactory, auditok.util.AudioEnergyValidator
and auditok.core.StreamTokenizer for Audio Activity Detection demos using audio data. Before we get any
further it is worth, explaining a certain number of points.

auditok.util.ADSFactory.ads() method is used to create an auditok.util.ADSFactory.AudioDataSource
object either from a wave file, the built-in microphone or a user-supplied data buffer. Refer to the API reference
for more information and examples on ADSFactory.ads() and AudioDataSource.

The created AudioDataSource object is then passed to StreamTokenizer.tokenize() for tokenization.

auditok.util.ADSFactory.ads() accepts a number of keyword arguments, of which none is mandatory.
The returned AudioDataSource object’s features and behavior can however greatly differ
depending on the passed arguments. Further details can be found in the respective method documentation.

Note however the following two calls that will create an AudioDataSource
that reads data from an audio file and from the built-in microphone respectively.

from auditok import ADSFactory

Get an AudioDataSource from a file
use 'filename', alias 'fn' keyword argument
file_ads = ADSFactory.ads(filename = "path/to/file/")

Get an AudioDataSource from the built-in microphone
The returned object has the default values for sampling
rate, sample width an number of channels. see method's
documentation for customized values
mic_ads = ADSFactory.ads()

For StreamTkenizer, parameters min_length, max_length and max_continuous_silence
are expressed in terms of number of frames. Each call to AudioDataSource.read() returns
one frame of data or None.

If you want a max_length of 2 seconds for your detected sound events and your analysis window
is 10 ms long, you have to specify a max_length of 200 (int(2. / (10. / 1000)) == 200).
For a max_continuous_silence of 300 ms for instance, the value to pass to StreamTokenizer is 30
(int(0.3 / (10. / 1000)) == 30).

Each time StreamTkenizer calls the read() (has no argument) method of an
AudioDataSource object, it returns the same amount of data, except if there are no more
data (returns what’s left in stream or None).

This fixed-length amount of data is referred here to as analysis window and is a parameter of
ADSFactory.ads() method. By default ADSFactory.ads() uses an analysis window of 10 ms.

The number of samples that 10 ms of audio data contain will vary, depending on the sampling
rate of your audio source/data (file, microphone, etc.).
For a sampling rate of 16KHz (16000 samples per second), we have 160 samples for 10 ms.

You can use the block_size keyword (alias bs) to define your analysis window:

from auditok import ADSFactory

'''
Assume you have an audio file with a sampling rate of 16000
'''

file_ads.read() will return blocks of 160 sample
file_ads = ADSFactory.ads(filename = "path/to/file/", block_size = 160)

file_ads.read() will return blocks of 320 sample
file_ads = ADSFactory.ads(filename = "path/to/file/", bs = 320)

Fortunately, you can specify the size of your analysis window in seconds, thanks to keyword block_dur
(alias bd):

from auditok import ADSFactory
use an analysis window of 20 ms
file_ads = ADSFactory.ads(filename = "path/to/file/", bd = 0.02)

For StreamTkenizer, each read() call that does not return None is treated as a processing
frame. StreamTkenizer has no way to figure out the temporal length of that frame (why sould it?). So to
correctly initialize your StreamTokenizer, based on your analysis window duration, use something like:

analysis_win_seconds = 0.01 # 10 ms
my_ads = ADSFactory.ads(block_dur = analysis_win_seconds)
analysis_window_ms = analysis_win_seconds * 1000

If you want your maximum continuous silence to be 300 ms use:
max_continuous_silence = int(300. / analysis_window_ms)

which is the same as:
max_continuous_silence = int(0.3 / (analysis_window_ms / 1000))

or simply:
max_continuous_silence = 30

Examples using real audio data

Extract isolated phrases from an utterance

We will build an auditok.util.ADSFactory.AudioDataSource using a wave file from
the database. The file contains of isolated pronunciation of digits from 1 to 1
in Arabic as well as breath-in/out between 2 and 3. The code will play the
original file then the detected sounds separately. Note that we use an
energy_threshold of 65, this parameter should be carefully chosen. It depends
on microphone quality, background noise and the amplitude of events you want to
detect.

from auditok import ADSFactory, AudioEnergyValidator, StreamTokenizer, player_for, dataset

We set the `record` argument to True so that we can rewind the source
asource = ADSFactory.ads(filename=dataset.one_to_six_arabic_16000_mono_bc_noise, record=True)

validator = AudioEnergyValidator(sample_width=asource.get_sample_width(), energy_threshold=65)

Defalut analysis window is 10 ms (float(asource.get_block_size()) / asource.get_sampling_rate())
min_length=20 : minimum length of a valid audio activity is 20 * 10 == 200 ms
max_length=4000 : maximum length of a valid audio activity is 400 * 10 == 4000 ms == 4 seconds
max_continuous_silence=30 : maximum length of a tolerated silence within a valid audio activity is 30 * 30 == 300 ms
tokenizer = StreamTokenizer(validator=validator, min_length=20, max_length=400, max_continuous_silence=30)

asource.open()
tokens = tokenizer.tokenize(asource)

Play detected regions back

player = player_for(asource)

Rewind and read the whole signal
asource.rewind()
original_signal = []

while True:
 w = asource.read()
 if w is None:
 break
 original_signal.append(w)

original_signal = ''.join(original_signal)

print("Playing the original file...")
player.play(original_signal)

print("playing detected regions...")
for t in tokens:
 print("Token starts at {0} and ends at {1}".format(t[1], t[2]))
 data = ''.join(t[0])
 player.play(data)

assert len(tokens) == 8

The tokenizer extracts 8 audio regions from the signal, including all isolated digits
(from 1 to 6) as well as the 2-phase respiration of the subject. You might have noticed
that, in the original file, the last three digit are closer to each other than the
previous ones. If you wan them to be extracted as one single phrase, you can do so
by tolerating a larger continuous silence within a detection:

tokenizer.max_continuous_silence = 50
asource.rewind()
tokens = tokenizer.tokenize(asource)

for t in tokens:
 print("Token starts at {0} and ends at {1}".format(t[1], t[2]))
 data = ''.join(t[0])
 player.play(data)

assert len(tokens) == 6

Trim leading and trailing silence

The tokenizer in the following example is set up to remove the silence
that precedes the first acoustic activity or follows the last activity
in a record. It preserves whatever it founds between the two activities.
In other words, it removes the leading and trailing silence.

Sampling rate is 44100 sample per second, we’ll use an analysis window of 100 ms
(i.e. block_size == 4410)

Energy threshold is 50.

The tokenizer will start accumulating windows up from the moment it encounters
the first analysis window of an energy >= 50. ALL the following windows will be
kept regardless of their energy. At the end of the analysis, it will drop trailing
windows with an energy below 50.

This is an interesting example because the audio file we’re analyzing contains a very
brief noise that occurs within the leading silence. We certainly do want our tokenizer
to stop at this point and considers whatever it comes after as a useful signal.
To force the tokenizer to ignore that brief event we use two other parameters init_min
and init_max_silence. By init_min = 3 and init_max_silence = 1 we tell the tokenizer
that a valid event must start with at least 3 noisy windows, between which there
is at most 1 silent window.

Still with this configuration we can get the tokenizer detect that noise as a valid event
(if it actually contains 3 consecutive noisy frames). To circumvent this we use an enough
large analysis window (here of 100 ms) to ensure that the brief noise be surrounded by a much
longer silence and hence the energy of the overall analysis window will be below 50.

When using a shorter analysis window (of 10 ms for instance, block_size == 441), the brief
noise contributes more to energy calculation which yields an energy of over 50 for the window.
Again we can deal with this situation by using a higher energy threshold (55 for example).

from auditok import ADSFactory, AudioEnergyValidator, StreamTokenizer, player_for, dataset

record = True so that we'll be able to rewind the source.
asource = ADSFactory.ads(filename=dataset.was_der_mensch_saet_mono_44100_lead_trail_silence,
 record=True, block_size=4410)
asource.open()

original_signal = []
Read the whole signal
while True:
 w = asource.read()
 if w is None:
 break
 original_signal.append(w)

original_signal = ''.join(original_signal)

rewind source
asource.rewind()

Create a validator with an energy threshold of 50
validator = AudioEnergyValidator(sample_width=asource.get_sample_width(), energy_threshold=50)

Create a tokenizer with an unlimited token length and continuous silence within a token
Note the DROP_TRAILING_SILENCE mode that will ensure removing trailing silence
trimmer = StreamTokenizer(validator, min_length = 20, max_length=99999999, init_min=3, init_max_silence=1, max_continuous_silence=9999999, mode=StreamTokenizer.DROP_TRAILING_SILENCE)

tokens = trimmer.tokenize(asource)

Make sure we only have one token
assert len(tokens) == 1, "Should have detected one single token"

trimmed_signal = ''.join(tokens[0][0])

player = player_for(asource)

print("Playing original signal (with leading and trailing silence)...")
player.play(original_signal)
print("Playing trimmed signal...")
player.play(trimmed_signal)

Online audio signal processing

In the next example, audio data is directly acquired from the built-in microphone.
The auditok.core.StreamTokenizer.tokenize() method is passed a callback function
so that audio activities are delivered as soon as they are detected. Each detected
activity is played back using the build-in audio output device.

As mentioned before , Signal energy is strongly related to many factors such
microphone sensitivity, background noise (including noise inherent to the hardware),
distance and your operating system sound settings. Try a lower energy_threshold
if your noise does not seem to be detected and a higher threshold if you notice
an over detection (echo method prints a detection where you have made no noise).

from auditok import ADSFactory, AudioEnergyValidator, StreamTokenizer, player_for

record = True so that we'll be able to rewind the source.
max_time = 10: read 10 seconds from the microphone
asource = ADSFactory.ads(record=True, max_time=10)

validator = AudioEnergyValidator(sample_width=asource.get_sample_width(), energy_threshold=50)
tokenizer = StreamTokenizer(validator=validator, min_length=20, max_length=250, max_continuous_silence=30)

player = player_for(asource)

def echo(data, start, end):
 print("Acoustic activity at: {0}--{1}".format(start, end))
 player.play(''.join(data))

asource.open()

tokenizer.tokenize(asource, callback=echo)

If you want to re-run the tokenizer after changing of one or many parameters, use the following code:

asource.rewind()
change energy threshold for example
tokenizer.validator.set_energy_threshold(55)
tokenizer.tokenize(asource, callback=echo)

In case you want to play the whole recorded signal back use:

player.play(asource.get_audio_source().get_data_buffer())

Contributing

auditok is on GitHub [https://github.com/amsehili/auditok]. You’re welcome to fork it and contribute.

Amine SEHILI <amine.sehili@gmail.com>
September 2015

License

This package is published under GNU GPL Version 3.

auditok.core

This module gathers processing (i.e. tokenization) classes.

Class summary

	StreamTokenizer(validator, min_length, …)

	Class for stream tokenizers.

	
class auditok.core.StreamTokenizer(validator, min_length, max_length, max_continuous_silence, init_min=0, init_max_silence=0, mode=0)

	Class for stream tokenizers. It implements a 4-state automaton scheme
to extract sub-sequences of interest on the fly.

	Parameters

	
	validator :

	instance of DataValidator that implements is_valid method.

	min_length(int)

	Minimum number of frames of a valid token. This includes all tolerated non valid frames within the token.

	max_length(int)

	Maximum number of frames of a valid token. This includes all tolerated non valid frames within the token.

	max_continuous_silence(int)

	Maximum number of consecutive non-valid frames within a token.
Note that, within a valid token, there may be many tolerated silent regions that contain each a number of non valid frames up to max_continuous_silence

	init_min(int, default=0)

	Minimum number of consecutive valid frames that must be initially gathered before any sequence of non valid frames can be tolerated. This
option is not always needed, it can be used to drop non-valid tokens as
early as possible. Default = 0 means that the option is by default
ineffective.

	init_max_silence(int, default=0)

	Maximum number of tolerated consecutive non-valid frames if the number already gathered valid frames has not yet reached ‘init_min’.
This argument is normally used if init_min is used. Default = 0,
by default this argument is not taken into consideration.

	mode(int, default=0)

	mode can be:

1. StreamTokenizer.STRICT_MIN_LENGTH:
if token i is delivered because max_length
is reached, and token i+1 is immediately adjacent to
token i (i.e. token i ends at frame k and token i+1 starts
at frame k+1) then accept token i+1 only of it has a size of at
least min_length. The default behavior is to accept token i+1
event if it is shorter than min_length (given that the above conditions
are fulfilled of course).

	Examples

	

In the following code, without STRICT_MIN_LENGTH, the ‘BB’ token is
accepted although it is shorter than min_length (3), because it immediately
follows the latest delivered token:

from auditok import StreamTokenizer, StringDataSource, DataValidator

class UpperCaseChecker(DataValidator):
 def is_valid(self, frame):
 return frame.isupper()

dsource = StringDataSource("aaaAAAABBbbb")
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),
 min_length=3,
 max_length=4,
 max_continuous_silence=0)

tokenizer.tokenize(dsource)

	output

	[(['A', 'A', 'A', 'A'], 3, 6), (['B', 'B'], 7, 8)]

The following tokenizer will however reject the ‘BB’ token:

dsource = StringDataSource("aaaAAAABBbbb")
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),
 min_length=3, max_length=4,
 max_continuous_silence=0,
 mode=StreamTokenizer.STRICT_MIN_LENGTH)
tokenizer.tokenize(dsource)

	output

	

[(['A', 'A', 'A', 'A'], 3, 6)]

2. StreamTokenizer.DROP_TRAILING_SILENCE: drop all tailing non-valid frames
from a token to be delivered if and only if it is not truncated.
This can be a bit tricky. A token is actually delivered if:

	
	max_continuous_silence is reached

	or

	

	
	Its length reaches max_length. This is called a truncated token

In the current implementation, a StreamTokenizer’s decision is only based on already seen
data and on incoming data. Thus, if a token is truncated at a non-valid but tolerated
frame (max_length is reached but max_continuous_silence not yet) any tailing
silence will be kept because it can potentially be part of valid token (if max_length
was bigger). But if max_continuous_silence is reached before max_length, the delivered
token will not be considered as truncated but a result of normal end of detection
(i.e. no more valid data). In that case the tailing silence can be removed if you use
the StreamTokenizer.DROP_TRAILING_SILENCE mode.

	Example

	

tokenizer = StreamTokenizer(validator=UpperCaseChecker(), min_length=3,
 max_length=6, max_continuous_silence=3,
 mode=StreamTokenizer.DROP_TRAILING_SILENCE)

dsource = StringDataSource("aaaAAAaaaBBbbbb")
tokenizer.tokenize(dsource)

	output

	

[(['A', 'A', 'A', 'a', 'a', 'a'], 3, 8), (['B', 'B'], 9, 10)]

The first token is delivered with its tailing silence because it is truncated
while the second one has its tailing frames removed.

Without StreamTokenizer.DROP_TRAILING_SILENCE the output would be:

[(['A', 'A', 'A', 'a', 'a', 'a'], 3, 8), (['B', 'B', 'b', 'b', 'b'], 9, 13)]

3. StreamTokenizer.STRICT_MIN_LENGTH | StreamTokenizer.DROP_TRAILING_SILENCE:
use both options. That means: first remove tailing silence, then ckeck if the
token still has at least a length of min_length.

	
get_mode()

	Return the current mode. To check whether a specific mode is activated use
the bitwise ‘and’ operator &. Example:

if mode & self.STRICT_MIN_LENGTH != 0:
 do_something()

	
set_mode(mode)

	
	Parameters

	
	mode(int)

	New mode, must be one of:

	StreamTokenizer.STRICT_MIN_LENGTH

	StreamTokenizer.DROP_TRAILING_SILENCE

	StreamTokenizer.STRICT_MIN_LENGTH | StreamTokenizer.DROP_TRAILING_SILENCE

	0

See StreamTokenizer.__init__ for more information about the mode.

	
tokenize(data_source, callback=None)

	Read data from data_source, one frame a time, and process the read frames in
order to detect sequences of frames that make up valid tokens.

	Parameters

	
	data_sourceinstance of the DataSource class that implements a read method.

	‘read’ should return a slice of signal, i.e. frame (of whatever type as long as it can be processed by validator) and None if there is no more signal.

	callbackan optional 3-argument function.

	If a callback function is given, it will be called each time a valid token
is found.

	Returns

	A list of tokens if callback is None. Each token is tuple with the following elements:

where data is a list of read frames, start: index of the first frame in the
original data and end : index of the last frame.

auditok.util

Class summary

	DataSource

	Base class for objects passed to auditok.core.StreamTokenizer.tokenize().

	StringDataSource(data)

	A class that represent a DataSource as a string buffer.

	ADSFactory

	Factory class that makes it easy to create an ADSFactory.AudioDataSource object that implements DataSource and can therefore be passed to auditok.core.StreamTokenizer.tokenize().

	ADSFactory.AudioDataSource(audio_source, …)

	Base class for AudioDataSource objects.

	ADSFactory.ADSDecorator(ads)

	Base decorator class for AudioDataSource objects.

	ADSFactory.OverlapADS(ads, hop_size)

	A class for AudioDataSource objects that can read and return overlapping audio frames

	ADSFactory.LimiterADS(ads, max_time)

	A class for AudioDataSource objects that can read a fixed amount of data.

	ADSFactory.RecorderADS(ads)

	A class for AudioDataSource objects that can record all audio data they read, with a rewind facility.

	DataValidator

	Base class for a validator object used by core.StreamTokenizer to check if read data is valid.

	AudioEnergyValidator(sample_width[, …])

	The most basic auditok audio frame validator.

	
class auditok.util.DataSource

	Base class for objects passed to auditok.core.StreamTokenizer.tokenize().
Subclasses should implement a DataSource.read() method.

	
read()

	Read a piece of data read from this source.
If no more data is available, return None.

	
class auditok.util.DataValidator

	Base class for a validator object used by core.StreamTokenizer to check
if read data is valid.
Subclasses should implement is_valid() method.

	
is_valid(data)

	Check whether data is valid

	
class auditok.util.StringDataSource(data)

	A class that represent a DataSource as a string buffer.
Each call to DataSource.read() returns on character and moves one step forward.
If the end of the buffer is reached, read() returns None.

	Parameters

	
	data

	a basestring object.

	
read()

	Read one character from buffer.

	Returns

	Current character or None if end of buffer is reached

	
set_data(data)

	Set a new data buffer.

	Parameters

	
	dataa basestring object

	New data buffer.

	
class auditok.util.ADSFactory

	Factory class that makes it easy to create an ADSFactory.AudioDataSource object that implements
DataSource and can therefore be passed to auditok.core.StreamTokenizer.tokenize().

Whether you read audio data from a file, the microphone or a memory buffer, this factory
instantiates and returns the right ADSFactory.AudioDataSource object.

There are many other features you want your ADSFactory.AudioDataSource object to have, such as:
memorize all read audio data so that you can rewind and reuse it (especially useful when
reading data from the microphone), read a fixed amount of data (also useful when reading
from the microphone), read overlapping audio frames (often needed when dosing a spectral
analysis of data).

ADSFactory.ads() automatically creates and return object with the desired behavior according
to the supplied keyword arguments.

	
class ADSDecorator(ads)

	Base decorator class for AudioDataSource objects.

	
class AudioDataSource(audio_source, block_size)

	Base class for AudioDataSource objects.
It inherits from DataSource and encapsulates an AudioSource object.

	
read()

	Read a piece of data read from this source.
If no more data is available, return None.

	
class LimiterADS(ads, max_time)

	A class for AudioDataSource objects that can read a fixed amount of data.
This can be useful when reading data from the microphone or from large audio files.

	
read()

	Read a piece of data read from this source.
If no more data is available, return None.

	
class OverlapADS(ads, hop_size)

	A class for AudioDataSource objects that can read and return overlapping audio frames

	
read()

	Read a piece of data read from this source.
If no more data is available, return None.

	
class RecorderADS(ads)

	A class for AudioDataSource objects that can record all audio data they read,
with a rewind facility.

	
read()

	Read a piece of data read from this source.
If no more data is available, return None.

	
static ads(**kwargs)

	Create an return an ADSFactory.AudioDataSource. The type and behavior of the object is the result
of the supplied parameters.

	Parameters

	

	No parameters

	read audio data from the available built-in microphone with the default parameters.
The returned ADSFactory.AudioDataSource encapsulate an io.PyAudioSource object and hence
it accepts the next four parameters are passed to use instead of their default values.

	sampling_rate, sr(int)

	number of samples per second. Default = 16000.

	sample_width, sw(int)

	number of bytes per sample (must be in (1, 2, 4)). Default = 2

	channels, ch(int)

	number of audio channels. Default = 1 (only this value is currently accepted)

	frames_per_buffer, fpb(int)

	number of samples of PyAudio buffer. Default = 1024.

	audio_source, asrcan AudioSource object

	read data from this audio source

	filename, fn(string)

	build an io.AudioSource object using this file (currently only wave format is supported)

	data_buffer, db(string)

	build an io.BufferAudioSource using data in data_buffer. If this keyword is used,
sampling_rate, sample_width and channels are passed to io.BufferAudioSource
constructor and used instead of default values.

	max_time, mt(float)

	maximum time (in seconds) to read. Default behavior: read until there is no more data
available.

	record, rec(bool)

	save all read data in cache. Provide a navigable object which boasts a rewind method.
Default = False.

	block_dur, bd(float)

	processing block duration in seconds. This represents the quantity of audio data to return
each time the read() method is invoked. If block_dur is 0.025 (i.e. 25 ms) and the sampling
rate is 8000 and the sample width is 2 bytes, read() returns a buffer of 0.025 * 8000 * 2 = 400
bytes at most. This parameter will be looked for (and used if available) before block_size.
If neither parameter is given, block_dur will be set to 0.01 second (i.e. 10 ms)

	hop_dur, hd(float)

	quantity of data to skip from current processing window. if hop_dur is supplied then there
will be an overlap of block_dur - hop_dur between two adjacent blocks. This
parameter will be looked for (and used if available) before hop_size. If neither parameter
is given, hop_dur will be set to block_dur which means that there will be no overlap
between two consecutively read blocks.

	block_size, bs(int)

	number of samples to read each time the read method is called. Default: a block size
that represents a window of 10ms, so for a sampling rate of 16000, the default block_size
is 160 samples, for a rate of 44100, block_size = 441 samples, etc.

	hop_size, hs(int)

	determines the number of overlapping samples between two adjacent read windows. For a
hop_size of value N, the overlap is block_size - N. Default : hop_size = block_size,
means that there is no overlap.

	Returns

	

An AudioDataSource object that has the desired features.

	Exampels

	

	Create an AudioDataSource that reads data from the microphone (requires Pyaudio) with default audio parameters:

from auditok import ADSFactory
ads = ADSFactory.ads()
ads.get_sampling_rate()
16000
ads.get_sample_width()
2
ads.get_channels()
1

	Create an AudioDataSource that reads data from the microphone with a sampling rate of 48KHz:

from auditok import ADSFactory
ads = ADSFactory.ads(sr=48000)
ads.get_sampling_rate()
48000

	Create an AudioDataSource that reads data from a wave file:

import auditok
from auditok import ADSFactory
ads = ADSFactory.ads(fn=auditok.dataset.was_der_mensch_saet_mono_44100_lead_trail_silence)
ads.get_sampling_rate()
44100
ads.get_sample_width()
2
ads.get_channels()
1

	Define size of read blocks as 20 ms

import auditok
from auditok import ADSFactory
'''
we know samling rate for previous file is 44100 samples/second
so 10 ms are equivalent to 441 samples and 20 ms to 882
'''
block_size = 882
ads = ADSFactory.ads(bs = 882, fn=auditok.dataset.was_der_mensch_saet_mono_44100_lead_trail_silence)
ads.open()
read one block
data = ads.read()
ads.close()
len(data)
1764
assert len(data) == ads.get_sample_width() * block_size

	Define block size as a duration (use block_dur or bd):

import auditok
from auditok import ADSFactory
dur = 0.25 # second
ads = ADSFactory.ads(bd = dur, fn=auditok.dataset.was_der_mensch_saet_mono_44100_lead_trail_silence)
'''
we know samling rate for previous file is 44100 samples/second
for a block duration of 250 ms, block size should be 0.25 * 44100 = 11025
'''
ads.get_block_size()
11025
assert ads.get_block_size() == int(0.25 * 44100)
ads.open()
read one block
data = ads.read()
ads.close()
len(data)
22050
assert len(data) == ads.get_sample_width() * ads.get_block_size()

	Read overlapping blocks (one of hope_size, hs, hop_dur or hd > 0):

For better readability we’d better use auditok.io.BufferAudioSource with a string buffer:

import auditok
from auditok import ADSFactory
'''
we supply a data beffer instead of a file (keyword 'bata_buffer' or 'db')
sr : sampling rate = 16 samples/sec
sw : sample width = 1 byte
ch : channels = 1
'''
buffer = "abcdefghijklmnop" # 16 bytes = 1 second of data
bd = 0.250 # block duration = 250 ms = 4 bytes
hd = 0.125 # hop duration = 125 ms = 2 bytes
ads = ADSFactory.ads(db = "abcdefghijklmnop", bd = bd, hd = hd, sr = 16, sw = 1, ch = 1)
ads.open()
ads.read()
'abcd'
ads.read()
'cdef'
ads.read()
'efgh'
ads.read()
'ghij'
data = ads.read()
assert data == 'ijkl'

	Limit amount of read data (use max_time or mt):

'''
We know audio file is larger than 2.25 seconds
We want to read up to 2.25 seconds of audio data
'''
ads = ADSFactory.ads(mt = 2.25, fn=auditok.dataset.was_der_mensch_saet_mono_44100_lead_trail_silence)
ads.open()
data = []
while True:
 d = ads.read()
 if d is None:
 break
 data.append(d)

ads.close()
data = b''.join(data)
assert len(data) == int(ads.get_sampling_rate() * 2.25 * ads.get_sample_width() * ads.get_channels())

	
class auditok.util.AudioEnergyValidator(sample_width, energy_threshold=45)

	The most basic auditok audio frame validator.
This validator computes the log energy of an input audio frame
and return True if the result is >= a given threshold, False
otherwise.

	Parameters

	

	sample_width(int)

	Number of bytes of one audio sample. This is used to convert data from basestring or Bytes to
an array of floats.

	energy_threshold(float)

	A threshold used to check whether an input data buffer is valid.

	
is_valid(data)

	Check if data is valid. Audio data will be converted into an array (of
signed values) of which the log energy is computed. Log energy is computed
as follows:

arr = AudioEnergyValidator._convert(signal, sample_width)
energy = float(numpy.dot(arr, arr)) / len(arr)
log_energy = 10. * numpy.log10(energy)

	Parameters

	

	dataeither a string or a Bytes buffer

	data is converted into a numerical array using the sample_width
given in the constructor.

	Retruns

	

True if log_energy >= energy_threshold, False otherwise.

auditok.io

Module for low-level audio input-output operations.

Class summary

	AudioSource([sampling_rate, sample_width, …])

	Base class for audio source objects.

	Rewindable

	Base class for rewindable audio streams.

	BufferAudioSource(data_buffer[, …])

	An AudioSource that encapsulates and reads data from a memory buffer.

	WaveAudioSource(filename)

	A class for an AudioSource that reads data from a wave file.

	PyAudioSource([sampling_rate, sample_width, …])

	A class for an AudioSource that reads data the built-in microphone using PyAudio.

	StdinAudioSource([sampling_rate, …])

	A class for an AudioSource that reads data from standard input.

	PyAudioPlayer([sampling_rate, sample_width, …])

	A class for audio playback using Pyaudio

Function summary

	from_file(filename)

	Create an AudioSource object using the audio file specified by filename.

	player_for(audio_source)

	Return a PyAudioPlayer that can play data from audio_source.

	
class auditok.io.AudioSource(sampling_rate=16000, sample_width=2, channels=1)

	Base class for audio source objects.

Subclasses should implement methods to open/close and audio stream
and read the desired amount of audio samples.

	Parameters

	
	sampling_rateint

	Number of samples per second of audio stream. Default = 16000.

	sample_widthint

	Size in bytes of one audio sample. Possible values : 1, 2, 4.
Default = 2.

	channelsint

	Number of channels of audio stream. The current version supports
only mono audio streams (i.e. one channel).

	
close()

	Close audio source

	
get_channels()

	Return the number of channels of this audio source

	
get_sample_width()

	Return the number of bytes used to represent one audio sample

	
get_sampling_rate()

	Return the number of samples per second of audio stream

	
is_open()

	Return True if audio source is open, False otherwise

	
open()

	Open audio source

	
read(size)

	Read and return size audio samples at most.

	Parameters

	
	sizeint

	the number of samples to read.

	Returns

	Audio data as a string of length ‘N’ * ‘smaple_width’ * ‘channels’, where ‘N’ is:

	size if size < ‘left_samples’

	‘left_samples’ if size > ‘left_samples’

	
class auditok.io.Rewindable

	Base class for rewindable audio streams.
Subclasses should implement methods to return to the beginning of an
audio stream as well as method to move to an absolute audio position
expressed in time or in number of samples.

	
get_position()

	Return the total number of already read samples

	
get_time_position()

	Return the total duration in seconds of already read data

	
rewind()

	Go back to the beginning of audio stream

	
set_position(position)

	Move to an absolute position

	Parameters

	
	positionint

	number of samples to skip from the start of the stream

	
set_time_position(time_position)

	Move to an absolute position expressed in seconds

	Parameters

	
	time_positionfloat

	seconds to skip from the start of the stream

	
class auditok.io.BufferAudioSource(data_buffer, sampling_rate=16000, sample_width=2, channels=1)

	An AudioSource that encapsulates and reads data from a memory buffer.
It implements methods from Rewindable and is therefore a navigable AudioSource.

	
append_data(data_buffer)

	Append data to this audio stream

	Parameters

	
	data_bufferstr, basestring, Bytes

	a buffer with a length multiple of (sample_width * channels)

	
close()

	Close audio source

	
get_data_buffer()

	Return all audio data as one string buffer.

	
get_position()

	Return the total number of already read samples

	
get_time_position()

	Return the total duration in seconds of already read data

	
is_open()

	Return True if audio source is open, False otherwise

	
open()

	Open audio source

	
read(size)

	Read and return size audio samples at most.

	Parameters

	
	sizeint

	the number of samples to read.

	Returns

	Audio data as a string of length ‘N’ * ‘smaple_width’ * ‘channels’, where ‘N’ is:

	size if size < ‘left_samples’

	‘left_samples’ if size > ‘left_samples’

	
rewind()

	Go back to the beginning of audio stream

	
set_data(data_buffer)

	Set new data for this audio stream.

	Parameters

	
	data_bufferstr, basestring, Bytes

	a string buffer with a length multiple of (sample_width * channels)

	
set_position(position)

	Move to an absolute position

	Parameters

	
	positionint

	number of samples to skip from the start of the stream

	
set_time_position(time_position)

	Move to an absolute position expressed in seconds

	Parameters

	
	time_positionfloat

	seconds to skip from the start of the stream

	
class auditok.io.WaveAudioSource(filename)

	A class for an AudioSource that reads data from a wave file.

	Parameters

	
	filename :

	path to a valid wave file

	
close()

	Close audio source

	
is_open()

	Return True if audio source is open, False otherwise

	
open()

	Open audio source

	
read(size)

	Read and return size audio samples at most.

	Parameters

	
	sizeint

	the number of samples to read.

	Returns

	Audio data as a string of length ‘N’ * ‘smaple_width’ * ‘channels’, where ‘N’ is:

	size if size < ‘left_samples’

	‘left_samples’ if size > ‘left_samples’

	
class auditok.io.PyAudioSource(sampling_rate=16000, sample_width=2, channels=1, frames_per_buffer=1024)

	A class for an AudioSource that reads data the built-in microphone using PyAudio.

	
close()

	Close audio source

	
is_open()

	Return True if audio source is open, False otherwise

	
open()

	Open audio source

	
read(size)

	Read and return size audio samples at most.

	Parameters

	
	sizeint

	the number of samples to read.

	Returns

	Audio data as a string of length ‘N’ * ‘smaple_width’ * ‘channels’, where ‘N’ is:

	size if size < ‘left_samples’

	‘left_samples’ if size > ‘left_samples’

	
class auditok.io.StdinAudioSource(sampling_rate=16000, sample_width=2, channels=1)

	A class for an AudioSource that reads data from standard input.

	
close()

	Close audio source

	
is_open()

	Return True if audio source is open, False otherwise

	
open()

	Open audio source

	
read(size)

	Read and return size audio samples at most.

	Parameters

	
	sizeint

	the number of samples to read.

	Returns

	Audio data as a string of length ‘N’ * ‘smaple_width’ * ‘channels’, where ‘N’ is:

	size if size < ‘left_samples’

	‘left_samples’ if size > ‘left_samples’

	
class auditok.io.PyAudioPlayer(sampling_rate=16000, sample_width=2, channels=1)

	A class for audio playback using Pyaudio

	
auditok.io.from_file(filename)

	Create an AudioSource object using the audio file specified by filename.
The appropriate AudioSource class is guessed from file’s extension.

	Parameters

	
	filename :

	path to an audio file.

	Returns

	an AudioSource object that reads data from the given file.

	
auditok.io.player_for(audio_source)

	Return a PyAudioPlayer that can play data from audio_source.

	Parameters

	
	audio_source

	an AudioSource object.

	Returns

	PyAudioPlayer that has the same sampling rate, sample width and number of channels
as audio_source.

auditok.dataset

This module contains links to audio files you can use for test purposes.

	
auditok.dataset.one_to_six_arabic_16000_mono_bc_noise = '/home/docs/checkouts/readthedocs.org/user_builds/auditok/envs/v0.1.5/lib/python2.7/site-packages/auditok-0.1.5-py2.7.egg/auditok/data/1to6arabic_16000_mono_bc_noise.wav'

	A wave file that contains a pronunciation of Arabic numbers from 1 to 6

	
auditok.dataset.was_der_mensch_saet_mono_44100_lead_trail_silence = '/home/docs/checkouts/readthedocs.org/user_builds/auditok/envs/v0.1.5/lib/python2.7/site-packages/auditok-0.1.5-py2.7.egg/auditok/data/was_der_mensch_saet_das_wird_er_vielfach_ernten_44100Hz_mono_lead_trail_silence.wav'

	A wave file that contains a sentence between long leading and trailing periods of silence

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 auditok	

 	
 	
 auditok.core	

 	
 	
 auditok.dataset	

 	
 	
 auditok.io	

 	
 	
 auditok.util	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | O
 | P
 | R
 | S
 | T
 | W

A

 	
 	ads() (auditok.util.ADSFactory static method)

 	ADSFactory (class in auditok.util)

 	ADSFactory.ADSDecorator (class in auditok.util)

 	ADSFactory.AudioDataSource (class in auditok.util)

 	ADSFactory.LimiterADS (class in auditok.util)

 	ADSFactory.OverlapADS (class in auditok.util)

 	ADSFactory.RecorderADS (class in auditok.util)

 	
 	append_data() (auditok.io.BufferAudioSource method)

 	AudioEnergyValidator (class in auditok.util)

 	AudioSource (class in auditok.io)

 	auditok.core (module)

 	auditok.dataset (module)

 	auditok.io (module)

 	auditok.util (module)

B

 	
 	BufferAudioSource (class in auditok.io)

C

 	
 	close() (auditok.io.AudioSource method)

 	(auditok.io.BufferAudioSource method)

 	(auditok.io.PyAudioSource method)

 	(auditok.io.StdinAudioSource method)

 	(auditok.io.WaveAudioSource method)

D

 	
 	DataSource (class in auditok.util)

 	
 	DataValidator (class in auditok.util)

F

 	
 	from_file() (in module auditok.io)

G

 	
 	get_channels() (auditok.io.AudioSource method)

 	get_data_buffer() (auditok.io.BufferAudioSource method)

 	get_mode() (auditok.core.StreamTokenizer method)

 	get_position() (auditok.io.BufferAudioSource method)

 	(auditok.io.Rewindable method)

 	
 	get_sample_width() (auditok.io.AudioSource method)

 	get_sampling_rate() (auditok.io.AudioSource method)

 	get_time_position() (auditok.io.BufferAudioSource method)

 	(auditok.io.Rewindable method)

I

 	
 	is_open() (auditok.io.AudioSource method)

 	(auditok.io.BufferAudioSource method)

 	(auditok.io.PyAudioSource method)

 	(auditok.io.StdinAudioSource method)

 	(auditok.io.WaveAudioSource method)

 	
 	is_valid() (auditok.util.AudioEnergyValidator method)

 	(auditok.util.DataValidator method)

O

 	
 	one_to_six_arabic_16000_mono_bc_noise (in module auditok.dataset)

 	open() (auditok.io.AudioSource method)

 	(auditok.io.BufferAudioSource method)

 	(auditok.io.PyAudioSource method)

 	(auditok.io.StdinAudioSource method)

 	(auditok.io.WaveAudioSource method)

P

 	
 	player_for() (in module auditok.io)

 	
 	PyAudioPlayer (class in auditok.io)

 	PyAudioSource (class in auditok.io)

R

 	
 	read() (auditok.io.AudioSource method)

 	(auditok.io.BufferAudioSource method)

 	(auditok.io.PyAudioSource method)

 	(auditok.io.StdinAudioSource method)

 	(auditok.io.WaveAudioSource method)

 	(auditok.util.ADSFactory.AudioDataSource method)

 	(auditok.util.ADSFactory.LimiterADS method)

 	(auditok.util.ADSFactory.OverlapADS method)

 	(auditok.util.ADSFactory.RecorderADS method)

 	(auditok.util.DataSource method)

 	(auditok.util.StringDataSource method)

 	
 	rewind() (auditok.io.BufferAudioSource method)

 	(auditok.io.Rewindable method)

 	Rewindable (class in auditok.io)

S

 	
 	set_data() (auditok.io.BufferAudioSource method)

 	(auditok.util.StringDataSource method)

 	set_mode() (auditok.core.StreamTokenizer method)

 	set_position() (auditok.io.BufferAudioSource method)

 	(auditok.io.Rewindable method)

 	
 	set_time_position() (auditok.io.BufferAudioSource method)

 	(auditok.io.Rewindable method)

 	StdinAudioSource (class in auditok.io)

 	StreamTokenizer (class in auditok.core)

 	StringDataSource (class in auditok.util)

T

 	
 	tokenize() (auditok.core.StreamTokenizer method)

W

 	
 	was_der_mensch_saet_mono_44100_lead_trail_silence (in module auditok.dataset)

 	
 	WaveAudioSource (class in auditok.io)

auditok API Reference

	 auditok.core

	 auditok.util

	 auditok.io

	 auditok.dataset

 _static/up-pressed.png

_static/up.png

_images/figure_1.png
Amplitude (normalized)

03

2

---- Detection threshold

_images/figure_2.png
Amplitude (normalized)

03

---- Detection threshold

2

_images/figure_5_min_800ms.png
Amplitude (normalized)

03

02

01

00

2

- - Detection threshold

Time (s)

_images/figure_6_max_400ms.png
Amplitude (normalized)

03

02

01

00

L
S

- - Detection threshold

00 05 10 15 20 25 30

Time (s)

35

_images/figure_3_keep_trailing_silence.png
Amplitude (normalized)

03

Detection threshold

02

01

00

L
S

05

10

15

Time (s)

20

25

30

35

_images/figure_4_drop_trailing_silence.png
Amplitude (normalized)

- - Detection threshold

03

02

01

00

2

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 auditok, an AUDIo TOKenization tool

 		
 Command-line Usage Guide

 		
 API Tutorial

 		
 auditok.core

 		
 Class summary

 		
 auditok.util

 		
 Class summary

 		
 auditok.io

 		
 Class summary

 		
 Function summary

 		
 auditok.dataset

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

