
auditok Documentation
Release v0.2.0

Amine Sehili

Mar 01, 2021

Getting started

1 Installation 3

2 Loading audio data 5
2.1 From a file . 5
2.2 From a bytes object . 5
2.3 From the microphone . 6
2.4 Skip part of audio data . 6

3 Basic split example 7

4 Split and plot 9

5 Read and split data from the microphone 11

6 Accessing recorded data after split 13

7 Working with AudioRegions 15
7.1 Basic region information . 15
7.2 Concatenate regions . 15
7.3 Repeat a region . 16
7.4 Split one region into N regions of equal size . 16
7.5 Slice a region by samples, seconds or milliseconds . 16
7.6 Get arrays of audio samples . 17

8 Read and split audio data online 19

9 Read audio data with an external program 21

10 Play back audio detections 23

11 Print out detection information 25

12 Save detections 27

13 Save whole audio stream 29

14 Plot detections 31

15 Core 33

i

16 Util 35

17 Low-level IO 37

18 Signal processing 39

19 Dataset 41

20 License 43

ii

auditok Documentation, Release v0.2.0

auditok is an Audio Activity Detection tool that can process online data (read from an audio device or from
standard input) as well as audio files. It can be used as a command line program or by calling its API.

Getting started 1

https://travis-ci.org/amsehili/auditok
http://auditok.readthedocs.org/en/latest/?badge=latest

auditok Documentation, Release v0.2.0

2 Getting started

CHAPTER 1

Installation

A basic version of auditok will run with standard Python (>=3.4). However, without installing additional depen-
dencies, auditok can only deal with audio files in wav or raw formats. if you want more features, the following
packages are needed:

• pydub : read audio files in popular audio formats (ogg, mp3, etc.) or extract audio from a video file.

• pyaudio : read audio data from the microphone and play audio back.

• tqdm : show progress bar while playing audio clips.

• matplotlib : plot audio signal and detections.

• numpy : required by matplotlib. Also used for some math operations instead of standard python if available.

Install the latest stable version with pip:

sudo pip install auditok

Install with the latest development version from github:

pip install git+https://github.com/amsehili/auditok

or

git clone https://github.com/amsehili/auditok.git
cd auditok
python setup.py install

3

https://github.com/jiaaro/pydub
https://people.csail.mit.edu/hubert/pyaudio
https://github.com/tqdm/tqdm
https://matplotlib.org/stable/index.html
https://numpy.org/

auditok Documentation, Release v0.2.0

4 Chapter 1. Installation

CHAPTER 2

Loading audio data

Audio data is loaded with the load() function which can read from audio files, the microphone or use raw audio
data.

2.1 From a file

If the first argument of load() is a string, it should be a path to an audio file.

import auditok
region = auditok.load("audio.ogg")

If input file contains a raw (headerless) audio data, passing audio_format=”raw” and other audio parameters (sam-
pling_rate, sample_width and channels) is mandatory. In the following example we pass audio parameters with their
short names:

region = auditok.load("audio.dat",
audio_format="raw",
sr=44100, # alias for `sampling_rate`
sw=2 # alias for `sample_width`
ch=1 # alias for `channels`
)

2.2 From a bytes object

If the type of the first argument bytes, it’s interpreted as raw audio data:

sr = 16000
sw = 2
ch = 1
data = b"\0" * sr * sw * ch

(continues on next page)

5

auditok Documentation, Release v0.2.0

(continued from previous page)

region = auditok.load(data, sr=sr, sw=sw, ch=ch)
print(region)

output:

AudioRegion(duration=1.000, sampling_rate=16000, sample_width=2, channels=1)

2.3 From the microphone

If the first argument is None, load() will try to read data from the microphone. Audio parameters, as well as the
max_read parameter are mandatory:

sr = 16000
sw = 2
ch = 1
five_sec_audio = load(None, sr=sr, sw=sw, ch=ch, max_read=5)
print(five_sec_audio)

output:

AudioRegion(duration=5.000, sampling_rate=16000, sample_width=2, channels=1)

2.4 Skip part of audio data

If the skip parameter is > 0, load() will skip that leading amount of audio data:

import auditok
region = auditok.load("audio.ogg", skip=2) # skip the first 2 seconds

This argument must be 0 when reading from the microphone.

6 Chapter 2. Loading audio data

CHAPTER 3

Basic split example

In the following we’ll use the split() function to tokenize an audio file, requiring that valid audio events be at least
0.2 second long, at most 4 seconds long and contain a maximum of 0.3 second of continuous silence. Limiting the
size of detected events to 4 seconds means that an event of, say, 9.5 seconds will be returned as two 4-second events
plus a third 1.5-second event. Moreover, a valid event might contain many silences as far as none of them exceeds 0.3
second.

split() returns a generator of AudioRegion. An AudioRegion can be played, saved, repeated (i.e., multi-
plied by an integer) and concatenated with another region (see examples below). Notice that AudioRegion objects
returned by split() have a start a stop information stored in their meta data that can be accessed like ob-
ject.meta.start.

import auditok

split returns a generator of AudioRegion objects
audio_regions = auditok.split(

"audio.wav",
min_dur=0.2, # minimum duration of a valid audio event in seconds
max_dur=4, # maximum duration of an event
max_silence=0.3, # maximum duration of tolerated continuous silence within an

→˓event
energy_threshold=55 # threshold of detection

)

for i, r in enumerate(audio_regions):

Regions returned by `split` have 'start' and 'end' metadata fields
print("Region {i}: {r.meta.start:.3f}s -- {r.meta.end:.3f}s".format(i=i, r=r))

play detection
r.play(progress_bar=True)

region's metadata can also be used with the `save` method
(no need to explicitly specify region's object and `format` arguments)
filename = r.save("region_{meta.start:.3f}-{meta.end:.3f}.wav")

(continues on next page)

7

auditok Documentation, Release v0.2.0

(continued from previous page)

print("region saved as: {}".format(filename))

output example:

Region 0: 0.700s -- 1.400s
region saved as: region_0.700-1.400.wav
Region 1: 3.800s -- 4.500s
region saved as: region_3.800-4.500.wav
Region 2: 8.750s -- 9.950s
region saved as: region_8.750-9.950.wav
Region 3: 11.700s -- 12.400s
region saved as: region_11.700-12.400.wav
Region 4: 15.050s -- 15.850s
region saved as: region_15.050-15.850.wav

8 Chapter 3. Basic split example

CHAPTER 4

Split and plot

Visualize audio signal and detections:

import auditok
region = auditok.load("audio.wav") # returns an AudioRegion object
regions = region.split_and_plot(...) # or just region.splitp()

output figure:

9

auditok Documentation, Release v0.2.0

10 Chapter 4. Split and plot

CHAPTER 5

Read and split data from the microphone

If the first argument of split() is None, audio data is read from the microphone (requires pyaudio):

import auditok

sr = 16000
sw = 2
ch = 1
eth = 55 # alias for energy_threshold, default value is 50

try:
for region in auditok.split(input=None, sr=sr, sw=sw, ch=ch, eth=eth):

print(region)
region.play(progress_bar=True) # progress bar requires `tqdm`

except KeyboardInterrupt:
pass

split() will continue reading audio data until you press Ctrl-C. If you want to read a specific amount of audio
data, pass the desired number of seconds with the max_read argument.

11

https://people.csail.mit.edu/hubert/pyaudio

auditok Documentation, Release v0.2.0

12 Chapter 5. Read and split data from the microphone

CHAPTER 6

Accessing recorded data after split

Using a Recorder object you can get hold of acquired audio data:

import auditok

sr = 16000
sw = 2
ch = 1
eth = 55 # alias for energy_threshold, default value is 50

rec = auditok.Recorder(input=None, sr=sr, sw=sw, ch=ch)

try:
for region in auditok.split(rec, sr=sr, sw=sw, ch=ch, eth=eth):

print(region)
region.play(progress_bar=True) # progress bar requires `tqdm`

except KeyboardInterrupt:
pass

rec.rewind()
full_audio = load(rec.data, sr=sr, sw=sw, ch=ch)
alternatively you can use
full_audio = auditok.AudioRegion(rec.data, sr, sw, ch)

Recorder also accepts a max_read argument.

13

auditok Documentation, Release v0.2.0

14 Chapter 6. Accessing recorded data after split

CHAPTER 7

Working with AudioRegions

The following are a couple of interesting operations you can do with AudioRegion objects.

7.1 Basic region information

import auditok
region = auditok.load("audio.wav")
len(region) # number of audio samples int the regions, one channel considered
region.duration # duration in seconds
region.sampling_rate # alias `sr`
region.sample_width # alias `sw`
region.channels # alias `ch`

7.2 Concatenate regions

import auditok
region_1 = auditok.load("audio_1.wav")
region_2 = auditok.load("audio_2.wav")
region_3 = region_1 + region_2

Particularly useful if you want to join regions returned by split():

import auditok
regions = auditok.load("audio.wav").split()
gapless_region = sum(regions)

15

auditok Documentation, Release v0.2.0

7.3 Repeat a region

Multiply by a positive integer:

import auditok
region = auditok.load("audio.wav")
region_x3 = region * 3

7.4 Split one region into N regions of equal size

Divide by a positive integer (this has nothing to do with silence-based tokenization):

import auditok
region = auditok.load("audio.wav")
regions = regions / 5
assert sum(regions) == region

Note that if no perfect division is possible, the last region might be a bit shorter than the previous N-1 regions.

7.5 Slice a region by samples, seconds or milliseconds

Slicing an AudioRegion can be interesting in many situations. You can for example remove a fixed-size portion
of audio data from the beginning or from the end of a region or crop a region by an arbitrary amount as a data
augmentation strategy.

The most accurate way to slice an AudioRegion is to use indices that directly refer to raw audio samples. In the
following example, assuming that the sampling rate of audio data is 16000, you can extract a 5-second region from
main region, starting from the 20th second as follows:

import auditok
region = auditok.load("audio.wav")
start = 20 * 16000
stop = 25 * 16000
five_second_region = region[start:stop]

This allows you to practically start and stop at any audio sample within the region. Just as with a list you can omit one
of start and stop, or both. You can also use negative indices:

import auditok
region = auditok.load("audio.wav")
start = -3 * region.sr # `sr` is an alias of `sampling_rate`
three_last_seconds = region[start:]

While slicing by raw samples is flexible, slicing with temporal indices is more intuitive. You can do so by accessing
the millis or seconds views of an AudioRegion (or their shortcut alias ms and sec or s).

With the millis view:

import auditok
region = auditok.load("audio.wav")
five_second_region = region.millis[5000:10000]

or with the seconds view:

16 Chapter 7. Working with AudioRegions

auditok Documentation, Release v0.2.0

import auditok
region = auditok.load("audio.wav")
five_second_region = region.seconds[5:10]

seconds indices can also be floats:

import auditok
region = auditok.load("audio.wav")
five_second_region = region.seconds[2.5:7.5]

7.6 Get arrays of audio samples

If numpy is not installed, the samples attributes is a list of audio samples arrays (standard array.array objects), one
per channels. If numpy is installed, samples is a 2-D numpy.ndarray where the fist dimension is the channel and the
second is the the sample.

import auditok
region = auditok.load("audio.wav")
samples = region.samples
assert len(samples) == region.channels

If numpy is not installed you can use:

import numpy as np
region = auditok.load("audio.wav")
samples = np.asarray(region)
assert len(samples.shape) == 2

auditok can also be used from the command-line. For more information about parameters and their description
type:

auditok -h

In the following we’ll a few examples that covers most use-cases.

7.6. Get arrays of audio samples 17

auditok Documentation, Release v0.2.0

18 Chapter 7. Working with AudioRegions

CHAPTER 8

Read and split audio data online

To try auditok from the command line with you voice, you should either install pyaudio so that auditok can
directly read data from the microphone, or record data with an external program (e.g., sox) and redirect its output to
auditok.

Read data from the microphone (pyaudio installed):

auditok

This will print the id, start time and end time of each detected audio event. Note that we didn’t pass any additional
arguments to the previous command, so auditok will use default values. The most important arguments are:

• -n, --min-duration : minimum duration of a valid audio event in seconds, default: 0.2

• -m, --max-duration : maximum duration of a valid audio event in seconds, default: 5

• -s, --max-silence : maximum duration of a consecutive silence within a valid audio event in seconds,
default: 0.3

• -e, --energy-threshold : energy threshold for detection, default: 50

19

https://people.csail.mit.edu/hubert/pyaudio

auditok Documentation, Release v0.2.0

20 Chapter 8. Read and split audio data online

CHAPTER 9

Read audio data with an external program

If you don’t have pyaudio, you can use sox for data acquisition (sudo apt-get install sox) and make auditok read
data from standard input:

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok - -r 16000 -w 2 -c 1

Note that when data is read from standard input, the same audio parameters must be used for both sox (or any other
data generation/acquisition tool) and auditok. The following table summarizes audio parameters.

Audio parameter sox option auditok option auditok default
Sampling rate -r -r 16000
Sample width -b (bits) -w (bytes) 2
Channels -c -c 1
Encoding -e NA always a signed int

According to this table, the previous command can be run with the default parameters as:

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -i -

21

auditok Documentation, Release v0.2.0

22 Chapter 9. Read audio data with an external program

CHAPTER 10

Play back audio detections

Use the -E option (for echo):

auditok -E
or
rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok - -E

The second command works without further argument because data is recorded with auditok’s default audio pa-
rameters . If one of the parameters is not at the default value you should specify it alongside -E.

Using -E requires pyaudio, if it’s not installed you can use the -C (used to run an external command with detected
audio event as argument):

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok - -C "play -q {file}"

Using the -C option, auditok will save a detected event to a temporary wav file, fill the {file} placeholder with
the temporary name and run the command. In the above example we used -C to play audio data with an external
program but you can use it to run any other command.

23

auditok Documentation, Release v0.2.0

24 Chapter 10. Play back audio detections

CHAPTER 11

Print out detection information

By default auditok prints out the id, the start and the end of each detected audio event. The latter two values
represent the absolute position of the event within input stream (file or microphone) in seconds. The following listing
is an example output with the default format:

1 1.160 2.390
2 3.420 4.330
3 5.010 5.720
4 7.230 7.800

The format of the output is controlled by the --printf option. Alongside {id}, {start} and {end} placehold-
ers, you can use {duration} and {timestamp} (system timestamp of detected event) placeholders.

Using the following format for example:

auditok audio.wav --printf "{id}: [{timestamp}] start:{start}, end:{end}, dur:
→˓{duration}"

the output would be something like:

1: [2021/02/17 20:16:02] start:1.160, end:2.390, dur: 1.230
2: [2021/02/17 20:16:04] start:3.420, end:4.330, dur: 0.910
3: [2021/02/17 20:16:06] start:5.010, end:5.720, dur: 0.710
4: [2021/02/17 20:16:08] start:7.230, end:7.800, dur: 0.570

The format of {timestamp} is controlled by --timestamp-format (default: “%Y/%m/%d %H:%M:%S”)
whereas that of {start}, {end} and {duration} by --time-format (default: %S, absolute number of
seconds). A more detailed format with --time-format using %h (hours), %m (minutes), %s (seconds) and %i
(milliseconds) directives is possible (e.g., “%h:%m:%s.%i).

To completely disable printing detection information use -q.

25

auditok Documentation, Release v0.2.0

26 Chapter 11. Print out detection information

CHAPTER 12

Save detections

You can save audio events to disk as they’re detected using -o or --save-detections-as. To get a uniq file
name for each event, you can use {id}, {start}, {end} and {duration} placeholders. Example:

auditok --save-detections-as "{id}_{start}_{end}.wav"

When using {start}, {end} and {duration} placeholders, it’s recommended that the number of decimals of
the corresponding values be limited to 3. You can use something like:

auditok -o "{id}_{start:.3f}_{end:.3f}.wav"

27

auditok Documentation, Release v0.2.0

28 Chapter 12. Save detections

CHAPTER 13

Save whole audio stream

When reading audio data from the microphone, you most certainly want to save it to disk. For this you can use the -O
or --save-stream option.

auditok --save-stream "stream.wav"

Note this will work even if you read data from another file on disk.

29

auditok Documentation, Release v0.2.0

30 Chapter 13. Save whole audio stream

CHAPTER 14

Plot detections

Audio signal and detections can be plotted using the -p or --plot option. You can also save plot to disk using
--save-image. The following example does both:

auditok -p --save-image "plot.png" # can also be 'pdf' or another image format

output example:

Plotting requires matplotlib.

31

https://matplotlib.org/stable/index.html

auditok Documentation, Release v0.2.0

32 Chapter 14. Plot detections

CHAPTER 15

Core

33

auditok Documentation, Release v0.2.0

34 Chapter 15. Core

CHAPTER 16

Util

35

auditok Documentation, Release v0.2.0

36 Chapter 16. Util

CHAPTER 17

Low-level IO

37

auditok Documentation, Release v0.2.0

38 Chapter 17. Low-level IO

CHAPTER 18

Signal processing

39

auditok Documentation, Release v0.2.0

40 Chapter 18. Signal processing

CHAPTER 19

Dataset

41

auditok Documentation, Release v0.2.0

42 Chapter 19. Dataset

CHAPTER 20

License

MIT.

43

	Installation
	Loading audio data
	From a file
	From a bytes object
	From the microphone
	Skip part of audio data

	Basic split example
	Split and plot
	Read and split data from the microphone
	Accessing recorded data after split
	Working with AudioRegions
	Basic region information
	Concatenate regions
	Repeat a region
	Split one region into N regions of equal size
	Slice a region by samples, seconds or milliseconds
	Get arrays of audio samples

	Read and split audio data online
	Read audio data with an external program
	Play back audio detections
	Print out detection information
	Save detections
	Save whole audio stream
	Plot detections
	Core
	Util
	Low-level IO
	Signal processing
	Dataset
	License

