
auditok Documentation
Release v0.2.0

Amine Sehili

Mar 02, 2021

Getting started

1 Installation 3

2 Load audio data 5
2.1 From a file . 5
2.2 From a bytes object . 5
2.3 From the microphone . 6
2.4 Skip part of audio data . 6
2.5 Limit the amount of read audio . 6

3 Basic split example 7

4 Split and plot 9

5 Read and split data from the microphone 11

6 Access recorded data after split 13

7 Working with AudioRegions 15
7.1 Basic region information . 15
7.2 Concatenate regions . 15
7.3 Repeat a region . 16
7.4 Split one region into N regions of equal size . 16
7.5 Slice a region by samples, seconds or milliseconds . 16
7.6 Get arrays of audio samples . 17

8 Read and split audio data online 19

9 Read audio data with an external program 21

10 Play back audio detections 23

11 Print out detection information 25

12 Save detections 27

13 Save whole audio stream 29

14 Plot detections 31

i

15 Core 33
15.1 auditok.core.load . 33
15.2 auditok.core.split . 34
15.3 auditok.core.AudioRegion . 36
15.4 auditok.core.StreamTokenizer . 37

16 Util 47
16.1 auditok.util.AudioEnergyValidator . 47
16.2 auditok.util.AudioReader . 48
16.3 auditok.util.Recorder . 50
16.4 auditok.util.make_duration_formatter . 50
16.5 auditok.util.make_channel_selector . 51

17 Low-level IO 59
17.1 auditok.io.AudioSource . 59
17.2 auditok.io.Rewindable . 60
17.3 auditok.io.BufferAudioSource . 61
17.4 auditok.io.WaveAudioSource . 62
17.5 auditok.io.PyAudioSource . 62
17.6 auditok.io.StdinAudioSource . 63
17.7 auditok.io.PyAudioPlayer . 64
17.8 auditok.io.from_file . 64
17.9 auditok.io.to_file . 65
17.10 auditok.io.player_for . 66

18 Signal processing 73
18.1 auditok.signal.to_array . 73
18.2 auditok.signal.extract_single_channel . 74
18.3 auditok.signal.compute_average_channel . 74
18.4 auditok.signal.compute_average_channel_stereo . 74
18.5 auditok.signal.separate_channels . 74
18.6 auditok.signal.calculate_energy_single_channel . 75
18.7 auditok.signal.calculate_energy_multichannel . 75

19 Dataset 79
19.1 auditok.dataset.one_to_six_arabic_16000_mono_bc_noise . 79
19.2 auditok.dataset.was_der_mensch_saet_mono_44100_lead_trail_silence 79

20 License 81

Python Module Index 83

Index 85

ii

auditok Documentation, Release v0.2.0

auditok is an Audio Activity Detection tool that can process online data (read from an audio device or from
standard input) as well as audio files. It can be used as a command line program or by calling its API.

Getting started 1

https://travis-ci.org/amsehili/auditok
http://auditok.readthedocs.org/en/latest/?badge=latest

auditok Documentation, Release v0.2.0

2 Getting started

CHAPTER 1

Installation

A basic version of auditok will run with standard Python (>=3.4). However, without installing additional depen-
dencies, auditok can only deal with audio files in wav or raw formats. if you want more features, the following
packages are needed:

• pydub : read audio files in popular audio formats (ogg, mp3, etc.) or extract audio from a video file.

• pyaudio : read audio data from the microphone and play audio back.

• tqdm : show progress bar while playing audio clips.

• matplotlib : plot audio signal and detections.

• numpy : required by matplotlib. Also used for some math operations instead of standard python if available.

Install the latest stable version with pip:

sudo pip install auditok

Install with the latest development version from github:

pip install git+https://github.com/amsehili/auditok

or

git clone https://github.com/amsehili/auditok.git
cd auditok
python setup.py install

3

https://github.com/jiaaro/pydub
https://people.csail.mit.edu/hubert/pyaudio
https://github.com/tqdm/tqdm
https://matplotlib.org/stable/index.html
https://numpy.org/

auditok Documentation, Release v0.2.0

4 Chapter 1. Installation

CHAPTER 2

Load audio data

Audio data is loaded with the load() function which can read from audio files, the microphone or use raw audio
data.

2.1 From a file

If the first argument of load() is a string, it should be a path to an audio file.

import auditok
region = auditok.load("audio.ogg")

If input file contains raw (headerless) audio data, passing audio_format=”raw” and other audio parameters (sam-
pling_rate, sample_width and channels) is mandatory. In the following example we pass audio parameters with their
short names:

region = auditok.load("audio.dat",
audio_format="raw",
sr=44100, # alias for `sampling_rate`
sw=2 # alias for `sample_width`
ch=1 # alias for `channels`
)

2.2 From a bytes object

If the type of the first argument bytes, it’s interpreted as raw audio data:

sr = 16000
sw = 2
ch = 1
data = b"\0" * sr * sw * ch

(continues on next page)

5

auditok Documentation, Release v0.2.0

(continued from previous page)

region = auditok.load(data, sr=sr, sw=sw, ch=ch)
print(region)
alternatively you can use
#region = auditok.AudioRegion(data, sr, sw, ch)

output:

AudioRegion(duration=1.000, sampling_rate=16000, sample_width=2, channels=1)

2.3 From the microphone

If the first argument is None, load() will try to read data from the microphone. Audio parameters, as well as the
max_read parameter are mandatory:

sr = 16000
sw = 2
ch = 1
five_sec_audio = load(None, sr=sr, sw=sw, ch=ch, max_read=5)
print(five_sec_audio)

output:

AudioRegion(duration=5.000, sampling_rate=16000, sample_width=2, channels=1)

2.4 Skip part of audio data

If the skip parameter is > 0, load() will skip that amount in seconds of leading audio data:

import auditok
region = auditok.load("audio.ogg", skip=2) # skip the first 2 seconds

This argument must be 0 when reading data from the microphone.

2.5 Limit the amount of read audio

If the max_read parameter is > 0, load() will read at most that amount in seconds of audio data:

import auditok
region = auditok.load("audio.ogg", max_read=5)
assert region.duration <= 5

This argument is mandatory when reading data from the microphone.

6 Chapter 2. Load audio data

CHAPTER 3

Basic split example

In the following we’ll use the split() function to tokenize an audio file, requiring that valid audio events be at least
0.2 second long, at most 4 seconds long and contain a maximum of 0.3 second of continuous silence. Limiting the
size of detected events to 4 seconds means that an event of, say, 9.5 seconds will be returned as two 4-second events
plus a third 1.5-second event. Moreover, a valid event might contain many silences as far as none of them exceeds 0.3
second.

split() returns a generator of AudioRegion. An AudioRegion can be played, saved, repeated (i.e., multi-
plied by an integer) and concatenated with another region (see examples below). Notice that AudioRegion objects
returned by split() have a start a stop information stored in their meta data that can be accessed like ob-
ject.meta.start.

import auditok

split returns a generator of AudioRegion objects
audio_regions = auditok.split(

"audio.wav",
min_dur=0.2, # minimum duration of a valid audio event in seconds
max_dur=4, # maximum duration of an event
max_silence=0.3, # maximum duration of tolerated continuous silence within an

→˓event
energy_threshold=55 # threshold of detection

)

for i, r in enumerate(audio_regions):

Regions returned by `split` have 'start' and 'end' metadata fields
print("Region {i}: {r.meta.start:.3f}s -- {r.meta.end:.3f}s".format(i=i, r=r))

play detection
r.play(progress_bar=True)

region's metadata can also be used with the `save` method
(no need to explicitly specify region's object and `format` arguments)
filename = r.save("region_{meta.start:.3f}-{meta.end:.3f}.wav")

(continues on next page)

7

auditok Documentation, Release v0.2.0

(continued from previous page)

print("region saved as: {}".format(filename))

output example:

Region 0: 0.700s -- 1.400s
region saved as: region_0.700-1.400.wav
Region 1: 3.800s -- 4.500s
region saved as: region_3.800-4.500.wav
Region 2: 8.750s -- 9.950s
region saved as: region_8.750-9.950.wav
Region 3: 11.700s -- 12.400s
region saved as: region_11.700-12.400.wav
Region 4: 15.050s -- 15.850s
region saved as: region_15.050-15.850.wav

8 Chapter 3. Basic split example

CHAPTER 4

Split and plot

Visualize audio signal and detections:

import auditok
region = auditok.load("audio.wav") # returns an AudioRegion object
regions = region.split_and_plot(...) # or just region.splitp()

output figure:

9

auditok Documentation, Release v0.2.0

10 Chapter 4. Split and plot

CHAPTER 5

Read and split data from the microphone

If the first argument of split() is None, audio data is read from the microphone (requires pyaudio):

import auditok

sr = 16000
sw = 2
ch = 1
eth = 55 # alias for energy_threshold, default value is 50

try:
for region in auditok.split(input=None, sr=sr, sw=sw, ch=ch, eth=eth):

print(region)
region.play(progress_bar=True) # progress bar requires `tqdm`

except KeyboardInterrupt:
pass

split() will continue reading audio data until you press Ctrl-C. If you want to read a specific amount of audio
data, pass the desired number of seconds with the max_read argument.

11

https://people.csail.mit.edu/hubert/pyaudio

auditok Documentation, Release v0.2.0

12 Chapter 5. Read and split data from the microphone

CHAPTER 6

Access recorded data after split

Using a Recorder object you can get hold of acquired audio data:

import auditok

sr = 16000
sw = 2
ch = 1
eth = 55 # alias for energy_threshold, default value is 50

rec = auditok.Recorder(input=None, sr=sr, sw=sw, ch=ch)

try:
for region in auditok.split(rec, sr=sr, sw=sw, ch=ch, eth=eth):

print(region)
region.play(progress_bar=True) # progress bar requires `tqdm`

except KeyboardInterrupt:
pass

rec.rewind()
full_audio = load(rec.data, sr=sr, sw=sw, ch=ch)
alternatively you can use
full_audio = auditok.AudioRegion(rec.data, sr, sw, ch)

Recorder also accepts a max_read argument.

13

auditok Documentation, Release v0.2.0

14 Chapter 6. Access recorded data after split

CHAPTER 7

Working with AudioRegions

The following are a couple of interesting operations you can do with AudioRegion objects.

7.1 Basic region information

import auditok
region = auditok.load("audio.wav")
len(region) # number of audio samples int the regions, one channel considered
region.duration # duration in seconds
region.sampling_rate # alias `sr`
region.sample_width # alias `sw`
region.channels # alias `ch`

7.2 Concatenate regions

import auditok
region_1 = auditok.load("audio_1.wav")
region_2 = auditok.load("audio_2.wav")
region_3 = region_1 + region_2

Particularly useful if you want to join regions returned by split():

import auditok
regions = auditok.load("audio.wav").split()
gapless_region = sum(regions)

15

auditok Documentation, Release v0.2.0

7.3 Repeat a region

Multiply by a positive integer:

import auditok
region = auditok.load("audio.wav")
region_x3 = region * 3

7.4 Split one region into N regions of equal size

Divide by a positive integer (this has nothing to do with silence-based tokenization):

import auditok
region = auditok.load("audio.wav")
regions = regions / 5
assert sum(regions) == region

Note that if no perfect division is possible, the last region might be a bit shorter than the previous N-1 regions.

7.5 Slice a region by samples, seconds or milliseconds

Slicing an AudioRegion can be interesting in many situations. You can for example remove a fixed-size portion
of audio data from the beginning or from the end of a region or crop a region by an arbitrary amount as a data
augmentation strategy.

The most accurate way to slice an AudioRegion is to use indices that directly refer to raw audio samples. In the
following example, assuming that the sampling rate of audio data is 16000, you can extract a 5-second region from
main region, starting from the 20th second as follows:

import auditok
region = auditok.load("audio.wav")
start = 20 * 16000
stop = 25 * 16000
five_second_region = region[start:stop]

This allows you to practically start and stop at any audio sample within the region. Just as with a list you can omit one
of start and stop, or both. You can also use negative indices:

import auditok
region = auditok.load("audio.wav")
start = -3 * region.sr # `sr` is an alias of `sampling_rate`
three_last_seconds = region[start:]

While slicing by raw samples is flexible, slicing with temporal indices is more intuitive. You can do so by accessing
the millis or seconds views of an AudioRegion (or their shortcut alias ms and sec or s).

With the millis view:

import auditok
region = auditok.load("audio.wav")
five_second_region = region.millis[5000:10000]

or with the seconds view:

16 Chapter 7. Working with AudioRegions

auditok Documentation, Release v0.2.0

import auditok
region = auditok.load("audio.wav")
five_second_region = region.seconds[5:10]

seconds indices can also be floats:

import auditok
region = auditok.load("audio.wav")
five_second_region = region.seconds[2.5:7.5]

7.6 Get arrays of audio samples

If numpy is not installed, the samples attributes is a list of audio samples arrays (standard array.array objects), one
per channels. If numpy is installed, samples is a 2-D numpy.ndarray where the fist dimension is the channel and the
second is the the sample.

import auditok
region = auditok.load("audio.wav")
samples = region.samples
assert len(samples) == region.channels

If numpy is installed you can use:

import numpy as np
region = auditok.load("audio.wav")
samples = np.asarray(region)
assert len(samples.shape) == 2

auditok can also be used from the command-line. For more information about parameters and their description
type:

auditok -h

In the following we’ll a few examples that covers most use-cases.

7.6. Get arrays of audio samples 17

auditok Documentation, Release v0.2.0

18 Chapter 7. Working with AudioRegions

CHAPTER 8

Read and split audio data online

To try auditok from the command line with you voice, you should either install pyaudio so that auditok can
directly read data from the microphone, or record data with an external program (e.g., sox) and redirect its output to
auditok.

Read data from the microphone (pyaudio installed):

auditok

This will print the id, start time and end time of each detected audio event. Note that we didn’t pass any additional
arguments to the previous command, so auditok will use default values. The most important arguments are:

• -n, --min-duration : minimum duration of a valid audio event in seconds, default: 0.2

• -m, --max-duration : maximum duration of a valid audio event in seconds, default: 5

• -s, --max-silence : maximum duration of a consecutive silence within a valid audio event in seconds,
default: 0.3

• -e, --energy-threshold : energy threshold for detection, default: 50

19

https://people.csail.mit.edu/hubert/pyaudio

auditok Documentation, Release v0.2.0

20 Chapter 8. Read and split audio data online

CHAPTER 9

Read audio data with an external program

If you don’t have pyaudio, you can use sox for data acquisition (sudo apt-get install sox) and make auditok read
data from standard input:

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok - -r 16000 -w 2 -c 1

Note that when data is read from standard input, the same audio parameters must be used for both sox (or any other
data generation/acquisition tool) and auditok. The following table summarizes audio parameters.

Audio parameter sox option auditok option auditok default
Sampling rate -r -r 16000
Sample width -b (bits) -w (bytes) 2
Channels -c -c 1
Encoding -e NA always a signed int

According to this table, the previous command can be run with the default parameters as:

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok -i -

21

auditok Documentation, Release v0.2.0

22 Chapter 9. Read audio data with an external program

CHAPTER 10

Play back audio detections

Use the -E option (for echo):

auditok -E
or
rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok - -E

The second command works without further argument because data is recorded with auditok’s default audio pa-
rameters . If one of the parameters is not at the default value you should specify it alongside -E.

Using -E requires pyaudio, if it’s not installed you can use the -C (used to run an external command with detected
audio event as argument):

rec -q -t raw -r 16000 -c 1 -b 16 -e signed - | auditok - -C "play -q {file}"

Using the -C option, auditok will save a detected event to a temporary wav file, fill the {file} placeholder with
the temporary name and run the command. In the above example we used -C to play audio data with an external
program but you can use it to run any other command.

23

auditok Documentation, Release v0.2.0

24 Chapter 10. Play back audio detections

CHAPTER 11

Print out detection information

By default auditok prints out the id, the start and the end of each detected audio event. The latter two values
represent the absolute position of the event within input stream (file or microphone) in seconds. The following listing
is an example output with the default format:

1 1.160 2.390
2 3.420 4.330
3 5.010 5.720
4 7.230 7.800

The format of the output is controlled by the --printf option. Alongside {id}, {start} and {end} placehold-
ers, you can use {duration} and {timestamp} (system timestamp of detected event) placeholders.

Using the following format for example:

auditok audio.wav --printf "{id}: [{timestamp}] start:{start}, end:{end}, dur:
→˓{duration}"

the output would be something like:

1: [2021/02/17 20:16:02] start:1.160, end:2.390, dur: 1.230
2: [2021/02/17 20:16:04] start:3.420, end:4.330, dur: 0.910
3: [2021/02/17 20:16:06] start:5.010, end:5.720, dur: 0.710
4: [2021/02/17 20:16:08] start:7.230, end:7.800, dur: 0.570

The format of {timestamp} is controlled by --timestamp-format (default: “%Y/%m/%d %H:%M:%S”)
whereas that of {start}, {end} and {duration} by --time-format (default: %S, absolute number of
seconds). A more detailed format with --time-format using %h (hours), %m (minutes), %s (seconds) and %i
(milliseconds) directives is possible (e.g., “%h:%m:%s.%i).

To completely disable printing detection information use -q.

25

auditok Documentation, Release v0.2.0

26 Chapter 11. Print out detection information

CHAPTER 12

Save detections

You can save audio events to disk as they’re detected using -o or --save-detections-as. To get a uniq file
name for each event, you can use {id}, {start}, {end} and {duration} placeholders. Example:

auditok --save-detections-as "{id}_{start}_{end}.wav"

When using {start}, {end} and {duration} placeholders, it’s recommended that the number of decimals of
the corresponding values be limited to 3. You can use something like:

auditok -o "{id}_{start:.3f}_{end:.3f}.wav"

27

auditok Documentation, Release v0.2.0

28 Chapter 12. Save detections

CHAPTER 13

Save whole audio stream

When reading audio data from the microphone, you most certainly want to save it to disk. For this you can use the -O
or --save-stream option.

auditok --save-stream "stream.wav"

Note this will work even if you read data from another file on disk.

29

auditok Documentation, Release v0.2.0

30 Chapter 13. Save whole audio stream

CHAPTER 14

Plot detections

Audio signal and detections can be plotted using the -p or --plot option. You can also save plot to disk using
--save-image. The following example does both:

auditok -p --save-image "plot.png" # can also be 'pdf' or another image format

output example:

Plotting requires matplotlib.

31

https://matplotlib.org/stable/index.html

auditok Documentation, Release v0.2.0

32 Chapter 14. Plot detections

CHAPTER 15

Core

load(input[, skip, max_read]) Load audio data from a source and return it as an
AudioRegion.

split(input[, min_dur, max_dur, . . .]) Split audio data and return a generator of AudioRegions
AudioRegion(data, sampling_rate, . . . [, meta]) AudioRegion encapsulates raw audio data and provides

an interface to perform simple operations on it.
StreamTokenizer(validator, min_length, . . .) Class for stream tokenizers.

15.1 auditok.core.load

auditok.core.load(input, skip=0, max_read=None, **kwargs)
Load audio data from a source and return it as an AudioRegion.

Parameters

• input (None, str, bytes, AudioSource) – source to read audio data from. If
str, it should be a path to a valid audio file. If bytes, it is used as raw audio data. If it is
“-“, raw data will be read from stdin. If None, read audio data from the microphone using
PyAudio. If of type bytes or is a path to a raw audio file then sampling_rate, sample_width
and channels parameters (or their alias) are required. If it’s an AudioSource object it’s
used directly to read data.

• skip (float, default: 0) – amount, in seconds, of audio data to skip from source.
If read from a microphone, skip must be 0, otherwise a ValueError is raised.

• max_read (float, default: None) – amount, in seconds, of audio data to read
from source. If read from microphone, max_read should not be None, otherwise a ValueEr-
ror is raised.

• fmt (audio_format,) – type of audio data (e.g., wav, ogg, flac, raw, etc.). This will
only be used if input is a string path to an audio file. If not given, audio type will be guessed
from file name extension or from file header.

33

auditok Documentation, Release v0.2.0

• sr (sampling_rate,) – sampling rate of audio data. Required if input is a raw audio
file, a bytes object or None (i.e., read from microphone).

• sw (sample_width,) – number of bytes used to encode one audio sample, typically 1, 2
or 4. Required for raw data, see sampling_rate.

• ch (channels,) – number of channels of audio data. Required for raw data, see sam-
pling_rate.

• large_file (bool, default: False) – If True, AND if input is a path to a wav
of a raw audio file (and only these two formats) then audio file is not fully loaded to memory
in order to create the region (but the portion of data needed to create the region is of course
loaded to memory). Set to True if max_read is significantly smaller then the size of a large
audio file that shouldn’t be entirely loaded to memory.

Returns region

Return type AudioRegion

Raises ValueError – raised if input is None (i.e., read data from microphone) and skip != 0 or
input is None max_read is None (meaning that when reading from the microphone, no data
should be skipped, and maximum amount of data to read should be explicitly provided).

15.2 auditok.core.split

auditok.core.split(input, min_dur=0.2, max_dur=5, max_silence=0.3, drop_trailing_silence=False,
strict_min_dur=False, **kwargs)

Split audio data and return a generator of AudioRegions

Parameters

• input (str, bytes, AudioSource, AudioReader, AudioRegion or
None) – input audio data. If str, it should be a path to an existing audio file. “-” is
interpreted as standard input. If bytes, input is considered as raw audio data. If None, read
audio from microphone. Every object that is not an AudioReader will be transformed into
an AudioReader before processing. If it is an str that refers to a raw audio file, bytes or
None, audio parameters should be provided using kwargs (i.e., samplig_rate, sample_width
and channels or their alias). If input is str then audio format will be guessed from file
extension. audio_format (alias fmt) kwarg can also be given to specify audio format
explicitly. If none of these options is available, rely on backend (currently only pydub is
supported) to load data.

• min_dur (float, default: 0.2) – minimun duration in seconds of a detected au-
dio event. By using large values for min_dur, very short audio events (e.g., very short 1-word
utterances like ‘yes’ or ‘no’) can be mis detected. Using very short values might result in a
high number of short, unuseful audio events.

• max_dur (float, default: 5) – maximum duration in seconds of a detected audio
event. If an audio event lasts more than max_dur it will be truncated. If the continuation of
a truncated audio event is shorter than min_dur then this continuation is accepted as a valid
audio event if strict_min_dur is False. Otherwise it is rejected.

• max_silence (float, default: 0.3) – maximum duration of continuous silence
within an audio event. There might be many silent gaps of this duration within one audio
event. If the continuous silence happens at the end of the event than it’s kept as part of the
event if drop_trailing_silence is False (default).

34 Chapter 15. Core

auditok Documentation, Release v0.2.0

• drop_trailing_silence (bool, default: False) – Whether to remove
trailing silence from detected events. To avoid abrupt cuts in speech, trailing silence should
be kept, therefore this parameter should be False.

• strict_min_dur (bool, default: False) – strict minimum duration. Do not
accept an audio event if it is shorter than min_dur even if it is contiguous to the latest valid
event. This happens if the the latest detected event had reached max_dur.

Other Parameters

• analysis_window, aw (float, default: 0.05 (50 ms)) – duration of analysis window in sec-
onds. A value between 0.01 (10 ms) and 0.1 (100 ms) should be good for most use-cases.

• audio_format, fmt (str) – type of audio data (e.g., wav, ogg, flac, raw, etc.). This will only
be used if input is a string path to an audio file. If not given, audio type will be guessed from
file name extension or from file header.

• sampling_rate, sr (int) – sampling rate of audio data. Required if input is a raw audio file,
is a bytes object or None (i.e., read from microphone).

• sample_width, sw (int) – number of bytes used to encode one audio sample, typically 1, 2
or 4. Required for raw data, see sampling_rate.

• channels, ch (int) – number of channels of audio data. Required for raw data, see sam-
pling_rate.

• use_channel, uc ({None, “mix”} or int) – which channel to use for split if input has multiple
audio channels. Regardless of which channel is used for splitting, returned audio events
contain data from all channels, just as input. The following values are accepted:

– None (alias “any”): accept audio activity from any channel, even if other channels are
silent. This is the default behavior.

– “mix” (“avg” or “average”): mix down all channels (i.e. compute average channel) and
split the resulting channel.

– int (0 <=, > channels): use one channel, specified by integer id, for split.

• large_file (bool, default: False) – If True, AND if input is a path to a wav of a raw audio file
(and only these two formats) then audio data is lazily loaded to memory (i.e., one analysis
window a time). Otherwise the whole file is loaded to memory before split. Set to True if
the size of the file is larger than available memory.

• max_read, mr (float, default: None, read until end of stream) – maximum data to read from
source in seconds.

• validator, val (callable, DataValidator) – custom data validator. If None (default), an Au-
dioEnergyValidor is used with the given energy threshold. Can be a callable or an instance
of DataValidator that implements is_valid. In either case, it’ll be called with with a window
of audio data as the first parameter.

• energy_threshold, eth (float, default: 50) – energy threshold for audio activity detec-
tion. Audio regions that have enough windows of with a signal energy equal to or
above this threshold are considered valid audio events. Here we are referring to this
amount as the energy of the signal but to be more accurate, it is the log energy of
computed as: 20 * log10(sqrt(dot(x, x) / len(x))) (see AudioEnergyValidator and
calculate_energy_single_channel()). If validator is given, this argument is
ignored.

Yields AudioRegion – a generator of detected AudioRegion s.

15.2. auditok.core.split 35

auditok Documentation, Release v0.2.0

15.3 auditok.core.AudioRegion

class auditok.core.AudioRegion(data, sampling_rate, sample_width, channels, meta=None)
AudioRegion encapsulates raw audio data and provides an interface to perform simple operations on it. Use
AudioRegion.load to build an AudioRegion from different types of objects.

Parameters

• data (bytes) – raw audio data as a bytes object

• sampling_rate (int) – sampling rate of audio data

• sample_width (int) – number of bytes of one audio sample

• channels (int) – number of channels of audio data

• meta (dict, default: None) – any collection of <key:value> elements used to
build metadata for this AudioRegion. Meta data can be accessed via region.meta.key if key
is a valid python attribute name, or via region.meta[key] if not. Note that the split()
function (or the AudioRegion.split() method) returns AudioRegions with a start
and a stop meta values that indicate the location in seconds of the region in original audio
data.

See also:

AudioRegion.load

__init__(data, sampling_rate, sample_width, channels, meta=None)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(data, sampling_rate, sample_width, . . .) Initialize self.
load(input[, skip, max_read]) Create an AudioRegion by loading data from input.
play([progress_bar, player]) Play audio region.
plot([scale_signal, show, figsize, save_as, . . .]) Plot audio region, one sub-plot for each channel.
save(file[, audio_format, exists_ok]) Save audio region to file.
split([min_dur, max_dur, max_silence, . . .]) Split audio region.
split_and_plot([min_dur, max_dur, . . .]) Split region and plot signal and detections.

Attributes

ch Number of channels of audio data, alias for channels.
channels Number of channels of audio data.
duration Returns region duration in seconds.
len Return region length in number of samples.
meta
millis end]‘‘).
sample_width Number of bytes per sample, one channel consid-

ered.
samples Audio region as arrays of samples, one array per

channel.
sampling_rate Samling rate of audio data.
seconds end]‘‘).

Continued on next page

36 Chapter 15. Core

auditok Documentation, Release v0.2.0

Table 3 – continued from previous page
sr Samling rate of audio data, alias for sampling_rate.
sw Number of bytes per sample, alias for sampling_rate.

15.4 auditok.core.StreamTokenizer

class auditok.core.StreamTokenizer(validator, min_length, max_length,
max_continuous_silence, init_min=0, init_max_silence=0,
mode=0)

Class for stream tokenizers. It implements a 4-state automaton scheme to extract sub-sequences of interest on
the fly.

Parameters

• validator (callable, DataValidator (must implement is_valid)) – called with each data
frame read from source. Should take one positional argument and return True or False for
valid and invalid frames respectively.

• min_length (int) – Minimum number of frames of a valid token. This includes all
tolerated non valid frames within the token.

• max_length (int) – Maximum number of frames of a valid token. This includes all
tolerated non valid frames within the token.

• max_continuous_silence (int) – Maximum number of consecutive non-valid
frames within a token. Note that, within a valid token, there may be many tolerated silent
regions that contain each a number of non valid frames up to max_continuous_silence

• init_min (int) – Minimum number of consecutive valid frames that must be initially
gathered before any sequence of non valid frames can be tolerated. This option is not always
needed, it can be used to drop non-valid tokens as early as possible. Default = 0 means that
the option is by default ineffective.

• init_max_silence (int) – Maximum number of tolerated consecutive non-valid
frames if the number already gathered valid frames has not yet reached ‘init_min’.This
argument is normally used if init_min is used. Default = 0, by default this argument is not
taken into consideration.

• mode (int) – mode can be one of the following:

-1 StreamTokenizer.NORMAL : do not drop trailing silence, and accept a token shorter
than min_length if it is the continuation of the latest delivered token.

-2 StreamTokenizer.STRICT_MIN_LENGTH: if token i is delivered because
max_length is reached, and token i+1 is immediately adjacent to token i (i.e. token
i ends at frame k and token i+1 starts at frame k+1) then accept token i+1 only of it
has a size of at least min_length. The default behavior is to accept token i+1 event if it
is shorter than min_length (provided that the above conditions are fulfilled of course).

-3 StreamTokenizer.DROP_TRAILING_SILENCE: drop all tailing non-valid frames
from a token to be delivered if and only if it is not truncated. This can be a bit tricky.
A token is actually delivered if:

– max_continuous_silence is reached.

– Its length reaches max_length. This is referred to as a truncated token.

In the current implementation, a StreamTokenizer’s decision is only based on already
seen data and on incoming data. Thus, if a token is truncated at a non-valid but tol-
erated frame (max_length is reached but max_continuous_silence not yet) any tailing

15.4. auditok.core.StreamTokenizer 37

auditok Documentation, Release v0.2.0

silence will be kept because it can potentially be part of valid token (if max_length was
bigger). But if max_continuous_silence is reached before max_length, the delivered
token will not be considered as truncated but a result of normal end of detection (i.e.
no more valid data). In that case the trailing silence can be removed if you use the
StreamTokenizer.DROP_TRAILING_SILENCE mode.

-4 (StreamTokenizer.STRICT_MIN_LENGTH | StreamTok-
enizer.DROP_TRAILING_SILENCE): use both options. That means: first remove
tailing silence, then check if the token still has a length of at least min_length.

Examples

In the following code, without STRICT_MIN_LENGTH, the ‘BB’ token is accepted although it is shorter than
min_length (3), because it immediately follows the latest delivered token:

>>> from auditok.core import StreamTokenizer
>>> from StringDataSource, DataValidator

>>> class UpperCaseChecker(DataValidator):
>>> def is_valid(self, frame):

return frame.isupper()
>>> dsource = StringDataSource("aaaAAAABBbbb")
>>> tokenizer = StreamTokenizer(validator=UpperCaseChecker(),

min_length=3,
max_length=4,
max_continuous_silence=0)

>>> tokenizer.tokenize(dsource)
[(['A', 'A', 'A', 'A'], 3, 6), (['B', 'B'], 7, 8)]

The following tokenizer will however reject the ‘BB’ token:

>>> dsource = StringDataSource("aaaAAAABBbbb")
>>> tokenizer = StreamTokenizer(validator=UpperCaseChecker(),

min_length=3, max_length=4,
max_continuous_silence=0,
mode=StreamTokenizer.STRICT_MIN_LENGTH)

>>> tokenizer.tokenize(dsource)
[(['A', 'A', 'A', 'A'], 3, 6)]

>>> tokenizer = StreamTokenizer(
>>> validator=UpperCaseChecker(),
>>> min_length=3,
>>> max_length=6,
>>> max_continuous_silence=3,
>>> mode=StreamTokenizer.DROP_TRAILING_SILENCE
>>>)
>>> dsource = StringDataSource("aaaAAAaaaBBbbbb")
>>> tokenizer.tokenize(dsource)
[(['A', 'A', 'A', 'a', 'a', 'a'], 3, 8), (['B', 'B'], 9, 10)]

The first token is delivered with its tailing silence because it is truncated while the second one has its tailing
frames removed.

Without StreamTokenizer.DROP_TRAILING_SILENCE the output would be:

38 Chapter 15. Core

auditok Documentation, Release v0.2.0

[
(['A', 'A', 'A', 'a', 'a', 'a'], 3, 8),
(['B', 'B', 'b', 'b', 'b'], 9, 13)

]

__init__(validator, min_length, max_length, max_continuous_silence, init_min=0,
init_max_silence=0, mode=0)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(validator, min_length, max_length, . . .) Initialize self.
tokenize(data_source[, callback, generator]) Read data from data_source, one frame a time, and

process the read frames in order to detect sequences
of frames that make up valid tokens.

Attributes

DROP_TRAILING_SILENCE
NOISE
NORMAL
POSSIBLE_NOISE
POSSIBLE_SILENCE
SILENCE
STRICT_MIN_LENGTH

auditok.core.load(input, skip=0, max_read=None, **kwargs)
Load audio data from a source and return it as an AudioRegion.

Parameters

• input (None, str, bytes, AudioSource) – source to read audio data from. If
str, it should be a path to a valid audio file. If bytes, it is used as raw audio data. If it is
“-“, raw data will be read from stdin. If None, read audio data from the microphone using
PyAudio. If of type bytes or is a path to a raw audio file then sampling_rate, sample_width
and channels parameters (or their alias) are required. If it’s an AudioSource object it’s
used directly to read data.

• skip (float, default: 0) – amount, in seconds, of audio data to skip from source.
If read from a microphone, skip must be 0, otherwise a ValueError is raised.

• max_read (float, default: None) – amount, in seconds, of audio data to read
from source. If read from microphone, max_read should not be None, otherwise a ValueEr-
ror is raised.

• fmt (audio_format,) – type of audio data (e.g., wav, ogg, flac, raw, etc.). This will
only be used if input is a string path to an audio file. If not given, audio type will be guessed
from file name extension or from file header.

• sr (sampling_rate,) – sampling rate of audio data. Required if input is a raw audio
file, a bytes object or None (i.e., read from microphone).

• sw (sample_width,) – number of bytes used to encode one audio sample, typically 1, 2
or 4. Required for raw data, see sampling_rate.

15.4. auditok.core.StreamTokenizer 39

auditok Documentation, Release v0.2.0

• ch (channels,) – number of channels of audio data. Required for raw data, see sam-
pling_rate.

• large_file (bool, default: False) – If True, AND if input is a path to a wav
of a raw audio file (and only these two formats) then audio file is not fully loaded to memory
in order to create the region (but the portion of data needed to create the region is of course
loaded to memory). Set to True if max_read is significantly smaller then the size of a large
audio file that shouldn’t be entirely loaded to memory.

Returns region

Return type AudioRegion

Raises ValueError – raised if input is None (i.e., read data from microphone) and skip != 0 or
input is None max_read is None (meaning that when reading from the microphone, no data
should be skipped, and maximum amount of data to read should be explicitly provided).

auditok.core.split(input, min_dur=0.2, max_dur=5, max_silence=0.3, drop_trailing_silence=False,
strict_min_dur=False, **kwargs)

Split audio data and return a generator of AudioRegions

Parameters

• input (str, bytes, AudioSource, AudioReader, AudioRegion or
None) – input audio data. If str, it should be a path to an existing audio file. “-” is
interpreted as standard input. If bytes, input is considered as raw audio data. If None, read
audio from microphone. Every object that is not an AudioReader will be transformed into
an AudioReader before processing. If it is an str that refers to a raw audio file, bytes or
None, audio parameters should be provided using kwargs (i.e., samplig_rate, sample_width
and channels or their alias). If input is str then audio format will be guessed from file
extension. audio_format (alias fmt) kwarg can also be given to specify audio format
explicitly. If none of these options is available, rely on backend (currently only pydub is
supported) to load data.

• min_dur (float, default: 0.2) – minimun duration in seconds of a detected au-
dio event. By using large values for min_dur, very short audio events (e.g., very short 1-word
utterances like ‘yes’ or ‘no’) can be mis detected. Using very short values might result in a
high number of short, unuseful audio events.

• max_dur (float, default: 5) – maximum duration in seconds of a detected audio
event. If an audio event lasts more than max_dur it will be truncated. If the continuation of
a truncated audio event is shorter than min_dur then this continuation is accepted as a valid
audio event if strict_min_dur is False. Otherwise it is rejected.

• max_silence (float, default: 0.3) – maximum duration of continuous silence
within an audio event. There might be many silent gaps of this duration within one audio
event. If the continuous silence happens at the end of the event than it’s kept as part of the
event if drop_trailing_silence is False (default).

• drop_trailing_silence (bool, default: False) – Whether to remove
trailing silence from detected events. To avoid abrupt cuts in speech, trailing silence should
be kept, therefore this parameter should be False.

• strict_min_dur (bool, default: False) – strict minimum duration. Do not
accept an audio event if it is shorter than min_dur even if it is contiguous to the latest valid
event. This happens if the the latest detected event had reached max_dur.

Other Parameters

• analysis_window, aw (float, default: 0.05 (50 ms)) – duration of analysis window in sec-
onds. A value between 0.01 (10 ms) and 0.1 (100 ms) should be good for most use-cases.

40 Chapter 15. Core

auditok Documentation, Release v0.2.0

• audio_format, fmt (str) – type of audio data (e.g., wav, ogg, flac, raw, etc.). This will only
be used if input is a string path to an audio file. If not given, audio type will be guessed from
file name extension or from file header.

• sampling_rate, sr (int) – sampling rate of audio data. Required if input is a raw audio file,
is a bytes object or None (i.e., read from microphone).

• sample_width, sw (int) – number of bytes used to encode one audio sample, typically 1, 2
or 4. Required for raw data, see sampling_rate.

• channels, ch (int) – number of channels of audio data. Required for raw data, see sam-
pling_rate.

• use_channel, uc ({None, “mix”} or int) – which channel to use for split if input has multiple
audio channels. Regardless of which channel is used for splitting, returned audio events
contain data from all channels, just as input. The following values are accepted:

– None (alias “any”): accept audio activity from any channel, even if other channels are
silent. This is the default behavior.

– “mix” (“avg” or “average”): mix down all channels (i.e. compute average channel) and
split the resulting channel.

– int (0 <=, > channels): use one channel, specified by integer id, for split.

• large_file (bool, default: False) – If True, AND if input is a path to a wav of a raw audio file
(and only these two formats) then audio data is lazily loaded to memory (i.e., one analysis
window a time). Otherwise the whole file is loaded to memory before split. Set to True if
the size of the file is larger than available memory.

• max_read, mr (float, default: None, read until end of stream) – maximum data to read from
source in seconds.

• validator, val (callable, DataValidator) – custom data validator. If None (default), an Au-
dioEnergyValidor is used with the given energy threshold. Can be a callable or an instance
of DataValidator that implements is_valid. In either case, it’ll be called with with a window
of audio data as the first parameter.

• energy_threshold, eth (float, default: 50) – energy threshold for audio activity detec-
tion. Audio regions that have enough windows of with a signal energy equal to or
above this threshold are considered valid audio events. Here we are referring to this
amount as the energy of the signal but to be more accurate, it is the log energy of
computed as: 20 * log10(sqrt(dot(x, x) / len(x))) (see AudioEnergyValidator and
calculate_energy_single_channel()). If validator is given, this argument is
ignored.

Yields AudioRegion – a generator of detected AudioRegion s.

class auditok.core.AudioRegion(data, sampling_rate, sample_width, channels, meta=None)
AudioRegion encapsulates raw audio data and provides an interface to perform simple operations on it. Use
AudioRegion.load to build an AudioRegion from different types of objects.

Parameters

• data (bytes) – raw audio data as a bytes object

• sampling_rate (int) – sampling rate of audio data

• sample_width (int) – number of bytes of one audio sample

• channels (int) – number of channels of audio data

15.4. auditok.core.StreamTokenizer 41

auditok Documentation, Release v0.2.0

• meta (dict, default: None) – any collection of <key:value> elements used to
build metadata for this AudioRegion. Meta data can be accessed via region.meta.key if key
is a valid python attribute name, or via region.meta[key] if not. Note that the split()
function (or the AudioRegion.split() method) returns AudioRegions with a start
and a stop meta values that indicate the location in seconds of the region in original audio
data.

See also:

AudioRegion.load

ch
Number of channels of audio data, alias for channels.

channels
Number of channels of audio data.

duration
Returns region duration in seconds.

len
Return region length in number of samples.

classmethod load(input, skip=0, max_read=None, **kwargs)
Create an AudioRegion by loading data from input. See load() for parameters descripion.

Returns region

Return type AudioRegion

Raises ValueError – raised if input is None and skip != 0 or max_read is None.

millis
end]‘‘).

Type A view to slice audio region by milliseconds (using ‘‘region.millis[start

play(progress_bar=False, player=None, **progress_bar_kwargs)
Play audio region.

Parameters

• progress_bar (bool, default: False) – whether to use a progress bar while
playing audio. Default: False. progress_bar requires tqdm, if not installed, no progress
bar will be shown.

• player (AudioPalyer, default: None) – audio player to use. if None (de-
fault), use player_for() to get a new audio player.

• progress_bar_kwargs (kwargs) – keyword arguments to pass to tqdm
progress_bar builder (e.g., use leave=False to clean up the screen when play finishes).

plot(scale_signal=True, show=True, figsize=None, save_as=None, dpi=120, theme=’auditok’)
Plot audio region, one sub-plot for each channel.

Parameters

• scale_signal (bool, default: True) – if true, scale signal by subtracting its
mean and dividing by its standard deviation before plotting.

• show (bool) – whether to show plotted signal right after the call.

• figsize (tuple, default: None) – width and height of the figure to pass to
matplotlib.

42 Chapter 15. Core

auditok Documentation, Release v0.2.0

• save_as (str, default None.) – if provided, also save plot to file.

• dpi (int, default: 120) – plot dpi to pass to matplotlib.

• theme (str or dict, default: "auditok") – plot theme to use. Currently
only “auditok” theme is implemented. To provide you own them see auditok.
plotting.AUDITOK_PLOT_THEME.

sample_width
Number of bytes per sample, one channel considered.

samples
Audio region as arrays of samples, one array per channel.

sampling_rate
Samling rate of audio data.

save(file, audio_format=None, exists_ok=True, **audio_parameters)
Save audio region to file.

Parameters

• file (str) – path to output audio file. May contain {duration} placeholder as well as
any place holder that this region’s metadata might contain (e.g., regions returned by split
contain metadata with start and end attributes that can be used to build output file name as
{meta.start} and {meta.end}. See examples using placeholders with formatting.

• audio_format (str, default: None) – format used to save audio data. If None
(default), format is guessed from file name’s extension. If file name has no extension, audio
data is saved as a raw (headerless) audio file.

• exists_ok (bool, default: True) – If True, overwrite file if a file with the
same name exists. If False, raise an IOError if file exists.

• audio_parameters (dict) – any keyword arguments to be passed to audio saving
backend.

Returns

• file (str) – name of output file with replaced placehoders.

• Raises – IOError if file exists and exists_ok is False.

Examples

>>> region = AudioRegion(b'\0' * 2 * 24000,
>>> sampling_rate=16000,
>>> sample_width=2,
>>> channels=1)
>>> region.meta.start = 2.25
>>> region.meta.end = 2.25 + region.duration
>>> region.save('audio_{meta.start}-{meta.end}.wav')
>>> audio_2.25-3.75.wav
>>> region.save('region_{meta.start:.3f}_{duration:.3f}.wav')
audio_2.250_1.500.wav

seconds
end]‘‘).

Type A view to slice audio region by seconds (using ‘‘region.seconds[start

15.4. auditok.core.StreamTokenizer 43

auditok Documentation, Release v0.2.0

split(min_dur=0.2, max_dur=5, max_silence=0.3, drop_trailing_silence=False,
strict_min_dur=False, **kwargs)

Split audio region. See auditok.split() for a comprehensive description of split parameters. See
Also AudioRegio.split_and_plot().

split_and_plot(min_dur=0.2, max_dur=5, max_silence=0.3, drop_trailing_silence=False,
strict_min_dur=False, scale_signal=True, show=True, figsize=None,
save_as=None, dpi=120, theme=’auditok’, **kwargs)

Split region and plot signal and detections. Alias: splitp(). See auditok.split() for a compre-
hensive description of split parameters. Also see plot() for plot parameters.

sr
Samling rate of audio data, alias for sampling_rate.

sw
Number of bytes per sample, alias for sampling_rate.

class auditok.core.StreamTokenizer(validator, min_length, max_length,
max_continuous_silence, init_min=0, init_max_silence=0,
mode=0)

Class for stream tokenizers. It implements a 4-state automaton scheme to extract sub-sequences of interest on
the fly.

Parameters

• validator (callable, DataValidator (must implement is_valid)) – called with each data
frame read from source. Should take one positional argument and return True or False for
valid and invalid frames respectively.

• min_length (int) – Minimum number of frames of a valid token. This includes all
tolerated non valid frames within the token.

• max_length (int) – Maximum number of frames of a valid token. This includes all
tolerated non valid frames within the token.

• max_continuous_silence (int) – Maximum number of consecutive non-valid
frames within a token. Note that, within a valid token, there may be many tolerated silent
regions that contain each a number of non valid frames up to max_continuous_silence

• init_min (int) – Minimum number of consecutive valid frames that must be initially
gathered before any sequence of non valid frames can be tolerated. This option is not always
needed, it can be used to drop non-valid tokens as early as possible. Default = 0 means that
the option is by default ineffective.

• init_max_silence (int) – Maximum number of tolerated consecutive non-valid
frames if the number already gathered valid frames has not yet reached ‘init_min’.This
argument is normally used if init_min is used. Default = 0, by default this argument is not
taken into consideration.

• mode (int) – mode can be one of the following:

-1 StreamTokenizer.NORMAL : do not drop trailing silence, and accept a token shorter
than min_length if it is the continuation of the latest delivered token.

-2 StreamTokenizer.STRICT_MIN_LENGTH: if token i is delivered because
max_length is reached, and token i+1 is immediately adjacent to token i (i.e. token
i ends at frame k and token i+1 starts at frame k+1) then accept token i+1 only of it
has a size of at least min_length. The default behavior is to accept token i+1 event if it
is shorter than min_length (provided that the above conditions are fulfilled of course).

-3 StreamTokenizer.DROP_TRAILING_SILENCE: drop all tailing non-valid frames
from a token to be delivered if and only if it is not truncated. This can be a bit tricky.

44 Chapter 15. Core

auditok Documentation, Release v0.2.0

A token is actually delivered if:

– max_continuous_silence is reached.

– Its length reaches max_length. This is referred to as a truncated token.

In the current implementation, a StreamTokenizer’s decision is only based on already
seen data and on incoming data. Thus, if a token is truncated at a non-valid but tol-
erated frame (max_length is reached but max_continuous_silence not yet) any tailing
silence will be kept because it can potentially be part of valid token (if max_length was
bigger). But if max_continuous_silence is reached before max_length, the delivered
token will not be considered as truncated but a result of normal end of detection (i.e.
no more valid data). In that case the trailing silence can be removed if you use the
StreamTokenizer.DROP_TRAILING_SILENCE mode.

-4 (StreamTokenizer.STRICT_MIN_LENGTH | StreamTok-
enizer.DROP_TRAILING_SILENCE): use both options. That means: first remove
tailing silence, then check if the token still has a length of at least min_length.

Examples

In the following code, without STRICT_MIN_LENGTH, the ‘BB’ token is accepted although it is shorter than
min_length (3), because it immediately follows the latest delivered token:

>>> from auditok.core import StreamTokenizer
>>> from StringDataSource, DataValidator

>>> class UpperCaseChecker(DataValidator):
>>> def is_valid(self, frame):

return frame.isupper()
>>> dsource = StringDataSource("aaaAAAABBbbb")
>>> tokenizer = StreamTokenizer(validator=UpperCaseChecker(),

min_length=3,
max_length=4,
max_continuous_silence=0)

>>> tokenizer.tokenize(dsource)
[(['A', 'A', 'A', 'A'], 3, 6), (['B', 'B'], 7, 8)]

The following tokenizer will however reject the ‘BB’ token:

>>> dsource = StringDataSource("aaaAAAABBbbb")
>>> tokenizer = StreamTokenizer(validator=UpperCaseChecker(),

min_length=3, max_length=4,
max_continuous_silence=0,
mode=StreamTokenizer.STRICT_MIN_LENGTH)

>>> tokenizer.tokenize(dsource)
[(['A', 'A', 'A', 'A'], 3, 6)]

>>> tokenizer = StreamTokenizer(
>>> validator=UpperCaseChecker(),
>>> min_length=3,
>>> max_length=6,
>>> max_continuous_silence=3,
>>> mode=StreamTokenizer.DROP_TRAILING_SILENCE
>>>)
>>> dsource = StringDataSource("aaaAAAaaaBBbbbb")

(continues on next page)

15.4. auditok.core.StreamTokenizer 45

auditok Documentation, Release v0.2.0

(continued from previous page)

>>> tokenizer.tokenize(dsource)
[(['A', 'A', 'A', 'a', 'a', 'a'], 3, 8), (['B', 'B'], 9, 10)]

The first token is delivered with its tailing silence because it is truncated while the second one has its tailing
frames removed.

Without StreamTokenizer.DROP_TRAILING_SILENCE the output would be:

[
(['A', 'A', 'A', 'a', 'a', 'a'], 3, 8),
(['B', 'B', 'b', 'b', 'b'], 9, 13)

]

tokenize(data_source, callback=None, generator=False)
Read data from data_source, one frame a time, and process the read frames in order to detect sequences
of frames that make up valid tokens.

Parameters

data_source [instance of the DataSource class that] implements a read method. ‘read’
should return a slice of signal, i.e. frame (of whatever type as long as it can be processed
by validator) and None if there is no more signal.

callback [an optional 3-argument function.] If a callback function is given, it will be called
each time a valid token is found.

Returns A list of tokens if callback is None. Each token is tuple with the following elements:

where data is a list of read frames, start: index of the first frame in the original data and end
: index of the last frame.

46 Chapter 15. Core

CHAPTER 16

Util

AudioEnergyValidator(energy_threshold, . . .) A validator based on audio signal energy.
AudioReader(input[, block_dur, hop_dur, . . .]) Class to read fixed-size chunks of audio data from a

source.
Recorder(input[, block_dur, hop_dur, max_read]) Class to read fixed-size chunks of audio data from a

source and keeps data in a cache.
make_duration_formatter(fmt) Make and return a function used to format durations in

seconds.
make_channel_selector(sample_width, chan-
nels)

Create and return a callable used for audio channel se-
lection.

16.1 auditok.util.AudioEnergyValidator

class auditok.util.AudioEnergyValidator(energy_threshold, sample_width, channels,
use_channel=None)

A validator based on audio signal energy. For an input window of N audio samples (see
AudioEnergyValidator.is_valid()), the energy is computed as:

𝑒𝑛𝑒𝑟𝑔𝑦 = 20 log(
√︀
(1/𝑁

𝑁∑︁
𝑖

𝑎𝑖
2))𝑤ℎ𝑒𝑟𝑒a_i𝑖𝑠𝑡ℎ𝑒𝑖− 𝑡ℎ𝑎𝑢𝑑𝑖𝑜𝑠𝑎𝑚𝑝𝑙𝑒.

Parameters

• energy_threshold (float) – minimum energy that audio window should have to be valid.
• sample_width (int) – size in bytes of one audio sample.
• channels (int) – number of channels of audio data.
• use_channel ({None, "any", "mix", "avg", "average"} or int) – channel to use for

energy computation. The following values are accepted:
– None (alias “any”) : compute energy for each of the channels and return the maximum value.
– ”mix” (alias “avg” or “average”) : compute the average channel then compute its energy.
– int (>= 0 , < channels) : compute the energy of the specified channel and ignore the other ones.

47

auditok Documentation, Release v0.2.0

Returns
energy – energy of the audio window.

Return type
float

__init__(energy_threshold, sample_width, channels, use_channel=None)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(energy_threshold, sample_width, . . .) Initialize self.
is_valid(data)

param data array of raw audio data

16.2 auditok.util.AudioReader

class auditok.util.AudioReader(input, block_dur=0.01, hop_dur=None, record=False,
max_read=None, **kwargs)

Class to read fixed-size chunks of audio data from a source. A source can be a file on disk, standard input (with
input = “-“) or microphone. This is normally used by tokenization algorithms that expect source objects with a
read function that returns a windows of data of the same size at each call expect when remaining data does not
make up a full window.

Objects of this class can be set up to return audio windows with a given overlap and to record the whole stream
for later access (useful when reading data from the microphone). They can also have a limit for the maximum
amount of data to read.

Parameters

• input (str, bytes, AudioSource, AudioReader, AudioRegion or
None) – input audio data. If the type of the passed argument is str, it should be a path
to an existing audio file. “-” is interpreted as standardinput. If the type is bytes, input
is considered as a buffer of raw audio data. If None, read audio from microphone.
Every object that is not an AudioReader will be transformed, when possible, into an
AudioSource before processing. If it is an str that refers to a raw audio file, bytes or
None, audio parameters should be provided using kwargs (i.e., samplig_rate, sample_width
and channels or their alias).

• block_dur (float, default: 0.01) – length in seconds of audio windows to
return at each read call.

• hop_dur (float, default: None) – length in seconds of data amount to skip from
previous window. If defined, it is used to compute the temporal overlap between previous
and current window (nameply overlap = block_dur - hop_dur). Default, None, means that
consecutive windows do not overlap.

• record (bool, default: False) – whether to record read audio data for later ac-
cess. If True, audio data can be retrieved by first calling rewind(), then using the data
property. Note that once rewind() is called, no new data will be read from source (subse-
quent read() call will read data from cache) and that there’s no need to call rewind() again
to access data property.

• max_read (float, default: None) – maximum amount of audio data to read in
seconds. Default is None meaning that data will be read until end of stream is reached or,

48 Chapter 16. Util

auditok Documentation, Release v0.2.0

when reading from microphone a Ctrl-C is sent.

• input is None, of type bytes or a raw audio files some of
the (When) –

• kwargs are mandatory. (follwing) –

Other Parameters

• audio_format, fmt (str) – type of audio data (e.g., wav, ogg, flac, raw, etc.). This will only
be used if input is a string path to an audio file. If not given, audio type will be guessed from
file name extension or from file header.

• sampling_rate, sr (int) – sampling rate of audio data. Required if input is a raw audio file,
is a bytes object or None (i.e., read from microphone).

• sample_width, sw (int) – number of bytes used to encode one audio sample, typically 1, 2
or 4. Required for raw data, see sampling_rate.

• channels, ch (int) – number of channels of audio data. Required for raw data, see sam-
pling_rate.

• use_channel, uc ({None, “any”, “mix”, “avg”, “average”} or int) – which channel to
use for split if input has multiple audio channels. Regardless of which channel is used for
splitting, returned audio events contain data from all the channels of input. The following
values are accepted:

– None (alias “any”): accept audio activity from any channel, even if other channels are
silent. This is the default behavior.

– “mix” (alias “avg” or “average”): mix down all channels (i.e., compute average channel)
and split the resulting channel.

– int (>= 0 , < channels): use one channel, specified by its integer id, for split.

• large_file (bool, default: False) – If True, AND if input is a path to a wav of a raw audio file
(and only these two formats) then audio data is lazily loaded to memory (i.e., one analysis
window a time). Otherwise the whole file is loaded to memory before split. Set to True if
the size of the file is larger than available memory.

__init__(input, block_dur=0.01, hop_dur=None, record=False, max_read=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(input[, block_dur, hop_dur, . . .]) Initialize self.
read() Read a block (i.e., window) of data read from this

source.

Attributes

block_dur
hop_dur
hop_size
max_read
rewindable

16.2. auditok.util.AudioReader 49

auditok Documentation, Release v0.2.0

16.3 auditok.util.Recorder

class auditok.util.Recorder(input, block_dur=0.01, hop_dur=None, max_read=None,
**kwargs)

Class to read fixed-size chunks of audio data from a source and keeps data in a cache. Using this class is
equivalent to initializing AudioReader with record=True. For more information about the other parameters
see AudioReader.

Once the desired amount of data is read, you can call the rewind() method then get the recorded data via the
data attribute. You can also re-read cached data one window a time by calling read().

__init__(input, block_dur=0.01, hop_dur=None, max_read=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(input[, block_dur, hop_dur, max_read]) Initialize self.
read() Read a block (i.e., window) of data read from this

source.

Attributes

block_dur
hop_dur
hop_size
max_read
rewindable

16.4 auditok.util.make_duration_formatter

auditok.util.make_duration_formatter(fmt)
Make and return a function used to format durations in seconds. Accepted format directives are:

• %S : absolute number of seconds with 3 decimals. This direction should be used alone.

• %i : milliseconds

• %s : seconds

• %m : minutes

• %h : hours

These last 4 directives should all be specified. They can be placed anywhere in the input string.

Parameters fmt (str) – duration format.

Returns formatter – a function that takes a duration in seconds (float) and returns a string that
corresponds to that duration.

Return type callable

Raises TimeFormatError – if the format contains an unknown directive.

50 Chapter 16. Util

auditok Documentation, Release v0.2.0

Examples

Using %S:

formatter = make_duration_formatter("%S")
formatter(123.589)
'123.589'
formatter(123)
'123.000'

Using the other directives:

formatter = make_duration_formatter("%h:%m:%s.%i")
formatter(3600+120+3.25)
'01:02:03.250'

formatter = make_duration_formatter("%h hrs, %m min, %s sec and %i ms")
formatter(3600+120+3.25)
'01 hrs, 02 min, 03 sec and 250 ms'

omitting one of the 4 directives might result in a wrong duration
formatter = make_duration_formatter("%m min, %s sec and %i ms")
formatter(3600+120+3.25)
'02 min, 03 sec and 250 ms'

16.5 auditok.util.make_channel_selector

auditok.util.make_channel_selector(sample_width, channels, selected=None)
Create and return a callable used for audio channel selection. The returned selector can be used as selec-
tor(audio_data) and returns data that contains selected channel only.

Importantly, if selected is None or equals “any”, selector(audio_data) will separate and return a list of available
channels: [data_channe_1, data_channe_2, . . .].

Note also that returned selector expects bytes format for input data but does notnecessarily return a bytes object.
In fact, in order to extract the desired channel (or compute the average channel if selected = “avg”), it first
converts input data into a array.array (or numpy.ndarray) object. After channel of interst is selected/computed,
it is returned as such, without any reconversion to bytes. This behavior is wanted for efficiency purposes because
returned objects can be directly used as buffers of bytes. In any case, returned objects can be converted back to
bytes using bytes(obj).

Exception to this is the special case where channels = 1 in which input data is returned without any processing.

Parameters

• sample_width (int) – number of bytes used to encode one audio sample, should be 1,
2 or 4.

• channels (int) – number of channels of raw audio data that the returned selector should
expect.

• selected (int or str, default: None) – audio channel to select and return
when calling selector(raw_data). It should be an int >= -channels and < channels. If one of
“mix”, “avg” or “average” is passed then selector will return the average channel of audio
data. If None or “any”, return a list of all available channels at each call.

Returns selector – a callable that can be used as selector(audio_data) and returns data that contains
channel of interst.

16.5. auditok.util.make_channel_selector 51

auditok Documentation, Release v0.2.0

Return type callable

Raises ValueError – if sample_width is not one of 1, 2 or 4, or if selected has an unexpected
value.

auditok.util.make_duration_formatter(fmt)
Make and return a function used to format durations in seconds. Accepted format directives are:

• %S : absolute number of seconds with 3 decimals. This direction should be used alone.

• %i : milliseconds

• %s : seconds

• %m : minutes

• %h : hours

These last 4 directives should all be specified. They can be placed anywhere in the input string.

Parameters fmt (str) – duration format.

Returns formatter – a function that takes a duration in seconds (float) and returns a string that
corresponds to that duration.

Return type callable

Raises TimeFormatError – if the format contains an unknown directive.

Examples

Using %S:

formatter = make_duration_formatter("%S")
formatter(123.589)
'123.589'
formatter(123)
'123.000'

Using the other directives:

formatter = make_duration_formatter("%h:%m:%s.%i")
formatter(3600+120+3.25)
'01:02:03.250'

formatter = make_duration_formatter("%h hrs, %m min, %s sec and %i ms")
formatter(3600+120+3.25)
'01 hrs, 02 min, 03 sec and 250 ms'

omitting one of the 4 directives might result in a wrong duration
formatter = make_duration_formatter("%m min, %s sec and %i ms")
formatter(3600+120+3.25)
'02 min, 03 sec and 250 ms'

auditok.util.make_channel_selector(sample_width, channels, selected=None)
Create and return a callable used for audio channel selection. The returned selector can be used as selec-
tor(audio_data) and returns data that contains selected channel only.

Importantly, if selected is None or equals “any”, selector(audio_data) will separate and return a list of available
channels: [data_channe_1, data_channe_2, . . .].

52 Chapter 16. Util

auditok Documentation, Release v0.2.0

Note also that returned selector expects bytes format for input data but does notnecessarily return a bytes object.
In fact, in order to extract the desired channel (or compute the average channel if selected = “avg”), it first
converts input data into a array.array (or numpy.ndarray) object. After channel of interst is selected/computed,
it is returned as such, without any reconversion to bytes. This behavior is wanted for efficiency purposes because
returned objects can be directly used as buffers of bytes. In any case, returned objects can be converted back to
bytes using bytes(obj).

Exception to this is the special case where channels = 1 in which input data is returned without any processing.

Parameters

• sample_width (int) – number of bytes used to encode one audio sample, should be 1,
2 or 4.

• channels (int) – number of channels of raw audio data that the returned selector should
expect.

• selected (int or str, default: None) – audio channel to select and return
when calling selector(raw_data). It should be an int >= -channels and < channels. If one of
“mix”, “avg” or “average” is passed then selector will return the average channel of audio
data. If None or “any”, return a list of all available channels at each call.

Returns selector – a callable that can be used as selector(audio_data) and returns data that contains
channel of interst.

Return type callable

Raises ValueError – if sample_width is not one of 1, 2 or 4, or if selected has an unexpected
value.

class auditok.util.DataSource
Base class for objects passed to StreamTokenizer.tokenize(). Subclasses should implement a
DataSource.read() method.

read()
Read a block (i.e., window) of data read from this source. If no more data is available, return None.

class auditok.util.DataValidator
Base class for a validator object used by core.StreamTokenizer to check if read data is valid. Subclasses
should implement is_valid() method.

is_valid(data)
Check whether data is valid

class auditok.util.StringDataSource(data)
Class that represent a DataSource as a string buffer. Each call to DataSource.read() returns on char-
acter and moves one step forward. If the end of the buffer is reached, read() returns None.

Parameters data (str) – a string object used as data.

read()
Read one character from buffer.

Returns char – current character or None if end of buffer is reached.

Return type str

set_data(data)
Set a new data buffer.

Parameters data (str) – new data buffer.

16.5. auditok.util.make_channel_selector 53

auditok Documentation, Release v0.2.0

class auditok.util.ADSFactory
Deprecated since version 2.0.0: ADSFactory will be removed in auditok 2.0.1, use instances of AudioReader
instead.

Factory class that makes it easy to create an AudioDataSource object that implements DataSource and
can therefore be passed to auditok.core.StreamTokenizer.tokenize().

Whether you read audio data from a file, the microphone or a memory buffer, this factory instantiates and returns
the right AudioDataSource object.

There are many other features you want a AudioDataSource object to have, such as: memorize all read
audio data so that you can rewind and reuse it (especially useful when reading data from the microphone), read
a fixed amount of data (also useful when reading from the microphone), read overlapping audio frames (often
needed when dosing a spectral analysis of data).

ADSFactory.ads() automatically creates and return object with the desired behavior according to the sup-
plied keyword arguments.

static ads(**kwargs)
Create an return an AudioDataSource. The type and behavior of the object is the result of the supplied
parameters. Called without any parameters, the class will read audio data from the available built-in
microphone with the default parameters.

Parameters

• sr (sampling_rate,) – number of audio samples per second of input audio stream.

• sw (sample_width,) – number of bytes per sample, must be one of 1, 2 or 4

• ch (channels,) – number of audio channels, only a value of 1 is currently accepted.

• fpb (frames_per_buffer,) – number of samples of PyAudio buffer.

• asrc (audio_source,) – AudioSource to read data from

• fn (filename,) – create an AudioSource object using this file

• db (data_buffer,) – build an io.BufferAudioSource using data in data_buffer.
If this keyword is used, sampling_rate, sample_width and channels are passed to
io.BufferAudioSource constructor and used instead of default values.

• mt (max_time,) – maximum time (in seconds) to read. Default behavior: read until
there is no more data available.

• rec (record,) – save all read data in cache. Provide a navigable object which has a
rewind method.

• bd (block_dur,) – processing block duration in seconds. This represents the quantity
of audio data to return each time the read() method is invoked. If block_dur is 0.025
(i.e. 25 ms) and the sampling rate is 8000 and the sample width is 2 bytes, read() returns
a buffer of 0.025 * 8000 * 2 = 400 bytes at most. This parameter will be looked for (and
used if available) before block_size. If neither parameter is given, block_dur will be set to
0.01 second (i.e. 10 ms)

• hd (hop_dur,) – quantity of data to skip from current processing window. if hop_dur
is supplied then there will be an overlap of block_dur - hop_dur between two adjacent
blocks. This parameter will be looked for (and used if available) before hop_size. If
neither parameter is given, hop_dur will be set to block_dur which means that there will
be no overlap between two consecutively read blocks.

• bs (block_size,) – number of samples to read each time the read method is called.
Default: a block size that represents a window of 10ms, so for a sampling rate of 16000,
the default block_size is 160 samples, for a rate of 44100, block_size = 441 samples, etc.

54 Chapter 16. Util

auditok Documentation, Release v0.2.0

• hs (hop_size,) – determines the number of overlapping samples between two adjacent
read windows. For a hop_size of value N, the overlap is block_size - N. Default : hop_size
= block_size, means that there is no overlap.

Returns audio_data_source – an AudioDataSource object build with input parameters.

Return type AudioDataSource

auditok.util.AudioDataSource
alias of auditok.util.AudioReader

class auditok.util.AudioReader(input, block_dur=0.01, hop_dur=None, record=False,
max_read=None, **kwargs)

Class to read fixed-size chunks of audio data from a source. A source can be a file on disk, standard input (with
input = “-“) or microphone. This is normally used by tokenization algorithms that expect source objects with a
read function that returns a windows of data of the same size at each call expect when remaining data does not
make up a full window.

Objects of this class can be set up to return audio windows with a given overlap and to record the whole stream
for later access (useful when reading data from the microphone). They can also have a limit for the maximum
amount of data to read.

Parameters

• input (str, bytes, AudioSource, AudioReader, AudioRegion or
None) – input audio data. If the type of the passed argument is str, it should be a path
to an existing audio file. “-” is interpreted as standardinput. If the type is bytes, input
is considered as a buffer of raw audio data. If None, read audio from microphone.
Every object that is not an AudioReader will be transformed, when possible, into an
AudioSource before processing. If it is an str that refers to a raw audio file, bytes or
None, audio parameters should be provided using kwargs (i.e., samplig_rate, sample_width
and channels or their alias).

• block_dur (float, default: 0.01) – length in seconds of audio windows to
return at each read call.

• hop_dur (float, default: None) – length in seconds of data amount to skip from
previous window. If defined, it is used to compute the temporal overlap between previous
and current window (nameply overlap = block_dur - hop_dur). Default, None, means that
consecutive windows do not overlap.

• record (bool, default: False) – whether to record read audio data for later ac-
cess. If True, audio data can be retrieved by first calling rewind(), then using the data
property. Note that once rewind() is called, no new data will be read from source (subse-
quent read() call will read data from cache) and that there’s no need to call rewind() again
to access data property.

• max_read (float, default: None) – maximum amount of audio data to read in
seconds. Default is None meaning that data will be read until end of stream is reached or,
when reading from microphone a Ctrl-C is sent.

• input is None, of type bytes or a raw audio files some of
the (When) –

• kwargs are mandatory. (follwing) –

Other Parameters

• audio_format, fmt (str) – type of audio data (e.g., wav, ogg, flac, raw, etc.). This will only
be used if input is a string path to an audio file. If not given, audio type will be guessed from
file name extension or from file header.

16.5. auditok.util.make_channel_selector 55

auditok Documentation, Release v0.2.0

• sampling_rate, sr (int) – sampling rate of audio data. Required if input is a raw audio file,
is a bytes object or None (i.e., read from microphone).

• sample_width, sw (int) – number of bytes used to encode one audio sample, typically 1, 2
or 4. Required for raw data, see sampling_rate.

• channels, ch (int) – number of channels of audio data. Required for raw data, see sam-
pling_rate.

• use_channel, uc ({None, “any”, “mix”, “avg”, “average”} or int) – which channel to
use for split if input has multiple audio channels. Regardless of which channel is used for
splitting, returned audio events contain data from all the channels of input. The following
values are accepted:

– None (alias “any”): accept audio activity from any channel, even if other channels are
silent. This is the default behavior.

– “mix” (alias “avg” or “average”): mix down all channels (i.e., compute average channel)
and split the resulting channel.

– int (>= 0 , < channels): use one channel, specified by its integer id, for split.

• large_file (bool, default: False) – If True, AND if input is a path to a wav of a raw audio file
(and only these two formats) then audio data is lazily loaded to memory (i.e., one analysis
window a time). Otherwise the whole file is loaded to memory before split. Set to True if
the size of the file is larger than available memory.

read()
Read a block (i.e., window) of data read from this source. If no more data is available, return None.

class auditok.util.Recorder(input, block_dur=0.01, hop_dur=None, max_read=None,
**kwargs)

Class to read fixed-size chunks of audio data from a source and keeps data in a cache. Using this class is
equivalent to initializing AudioReader with record=True. For more information about the other parameters
see AudioReader.

Once the desired amount of data is read, you can call the rewind() method then get the recorded data via the
data attribute. You can also re-read cached data one window a time by calling read().

class auditok.util.AudioEnergyValidator(energy_threshold, sample_width, channels,
use_channel=None)

A validator based on audio signal energy. For an input window of N audio samples (see
AudioEnergyValidator.is_valid()), the energy is computed as:

𝑒𝑛𝑒𝑟𝑔𝑦 = 20 log(
√︀
(1/𝑁

𝑁∑︁
𝑖

𝑎𝑖
2))𝑤ℎ𝑒𝑟𝑒a_i𝑖𝑠𝑡ℎ𝑒𝑖− 𝑡ℎ𝑎𝑢𝑑𝑖𝑜𝑠𝑎𝑚𝑝𝑙𝑒.

Parameters

• energy_threshold (float) – minimum energy that audio window should have to be valid.
• sample_width (int) – size in bytes of one audio sample.
• channels (int) – number of channels of audio data.
• use_channel ({None, "any", "mix", "avg", "average"} or int) – channel to use for

energy computation. The following values are accepted:
– None (alias “any”) : compute energy for each of the channels and return the maximum value.
– ”mix” (alias “avg” or “average”) : compute the average channel then compute its energy.
– int (>= 0 , < channels) : compute the energy of the specified channel and ignore the other ones.

Returns
energy – energy of the audio window.

56 Chapter 16. Util

auditok Documentation, Release v0.2.0

Return type
float

is_valid(data)

Parameters data (bytes-like) – array of raw audio data

Returns True if the energy of audio data is >= threshold, False otherwise.

Return type bool

16.5. auditok.util.make_channel_selector 57

auditok Documentation, Release v0.2.0

58 Chapter 16. Util

CHAPTER 17

Low-level IO

Module for low-level audio input-output operations.

AudioSource(sampling_rate, sample_width, . . .) Base class for audio source objects.
Rewindable(sampling_rate, sample_width, chan-
nels)

Base class for rewindable audio streams.

BufferAudioSource(data[, sampling_rate, . . .]) An AudioSource that encapsulates and reads data from
a memory buffer.

WaveAudioSource(filename) A class for an AudioSource that reads data from a wave
file.

PyAudioSource([sampling_rate, sample_width,
. . .])

A class for an AudioSource that reads data from built-
in microphone using PyAudio (https://people.csail.mit.
edu/hubert/pyaudio/).

StdinAudioSource([sampling_rate, . . .]) A class for an AudioSource that reads data from standard
input.

PyAudioPlayer([sampling_rate, sample_width,
. . .])

A class for audio playback using Pyaudio (https://
people.csail.mit.edu/hubert/pyaudio/).

from_file(filename[, audio_format, large_file]) Read audio data from filename and return an Au-
dioSource object.

to_file(data, file[, audio_format]) Writes audio data to file.
player_for(source) Return an AudioPlayer compatible with source (i.e., has

the same sampling rate, sample width and number of
channels).

17.1 auditok.io.AudioSource

class auditok.io.AudioSource(sampling_rate, sample_width, channels)
Base class for audio source objects.

Subclasses should implement methods to open/close and audio stream and read the desired amount of audio
samples.

59

https://people.csail.mit.edu/hubert/pyaudio/
https://people.csail.mit.edu/hubert/pyaudio/
https://people.csail.mit.edu/hubert/pyaudio/
https://people.csail.mit.edu/hubert/pyaudio/

auditok Documentation, Release v0.2.0

Parameters

• sampling_rate (int) – number of samples per second of audio data.

• sample_width (int) – size in bytes of one audio sample. Possible values: 1, 2 or 4.

• channels (int) – number of channels of audio data.

__init__(sampling_rate, sample_width, channels)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(sampling_rate, sample_width, chan-
nels)

Initialize self.

close() Close audio source.
is_open() Return True if audio source is open, False otherwise.
open() Open audio source.
read(size) Read and return size audio samples at most.

Attributes

ch Number of channels in audio stream (alias for chan-
nels).

channels Number of channels in audio stream.
sample_width Number of bytes used to represent one audio sample.
sampling_rate Number of samples per second of audio stream.
sr Number of samples per second of audio stream (alias

for sampling_rate).
sw Number of bytes used to represent one audio sample

(alias for sample_width).

17.2 auditok.io.Rewindable

class auditok.io.Rewindable(sampling_rate, sample_width, channels)
Base class for rewindable audio streams.

Subclasses should implement a method to return back to the start of an the stream (rewind), as well as a property
getter/setter named position that reads/sets stream position expressed in number of samples.

__init__(sampling_rate, sample_width, channels)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(sampling_rate, sample_width, chan-
nels)

Initialize self.

close() Close audio source.
is_open() Return True if audio source is open, False otherwise.
open() Open audio source.

Continued on next page

60 Chapter 17. Low-level IO

auditok Documentation, Release v0.2.0

Table 4 – continued from previous page
read(size) Read and return size audio samples at most.
rewind() Go back to the beginning of audio stream.

Attributes

ch Number of channels in audio stream (alias for chan-
nels).

channels Number of channels in audio stream.
position Return stream position in number of samples.
position_ms Return stream position in milliseconds.
position_s Return stream position in seconds.
sample_width Number of bytes used to represent one audio sample.
sampling_rate Number of samples per second of audio stream.
sr Number of samples per second of audio stream (alias

for sampling_rate).
sw Number of bytes used to represent one audio sample

(alias for sample_width).

17.3 auditok.io.BufferAudioSource

class auditok.io.BufferAudioSource(data, sampling_rate=16000, sample_width=2, chan-
nels=1)

An AudioSource that encapsulates and reads data from a memory buffer.

This class implements the Rewindable interface. :param data: audio data :type data: bytes :param sampling_rate:
number of samples per second of audio data. :type sampling_rate: int, default: 16000 :param sample_width:
size in bytes of one audio sample. Possible values: 1, 2 or 4. :type sample_width: int, default: 2 :param
channels: number of channels of audio data. :type channels: int, default: 1

__init__(data, sampling_rate=16000, sample_width=2, channels=1)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(data[, sampling_rate, . . .]) Initialize self.
close() Close audio source.
is_open() Return True if audio source is open, False otherwise.
open() Open audio source.
read(size) Read and return size audio samples at most.
rewind() Go back to the beginning of audio stream.

Attributes

ch Number of channels in audio stream (alias for chan-
nels).

channels Number of channels in audio stream.
data Get raw audio data as a bytes object.
position Get stream position in number of samples

Continued on next page

17.3. auditok.io.BufferAudioSource 61

auditok Documentation, Release v0.2.0

Table 7 – continued from previous page
position_ms Get stream position in milliseconds.
position_s Return stream position in seconds.
sample_width Number of bytes used to represent one audio sample.
sampling_rate Number of samples per second of audio stream.
sr Number of samples per second of audio stream (alias

for sampling_rate).
sw Number of bytes used to represent one audio sample

(alias for sample_width).

17.4 auditok.io.WaveAudioSource

class auditok.io.WaveAudioSource(filename)
A class for an AudioSource that reads data from a wave file.

This class should be used for large wave files to avoid loading the whole data to memory.

Parameters filename (str) – path to a valid wave file.

__init__(filename)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(filename) Initialize self.
close() Close audio source.
is_open() Return True if audio source is open, False otherwise.
open() Open audio source.
read(size) Read and return size audio samples at most.

Attributes

ch Number of channels in audio stream (alias for chan-
nels).

channels Number of channels in audio stream.
sample_width Number of bytes used to represent one audio sample.
sampling_rate Number of samples per second of audio stream.
sr Number of samples per second of audio stream (alias

for sampling_rate).
sw Number of bytes used to represent one audio sample

(alias for sample_width).

17.5 auditok.io.PyAudioSource

class auditok.io.PyAudioSource(sampling_rate=16000, sample_width=2, channels=1,
frames_per_buffer=1024, input_device_index=None)

A class for an AudioSource that reads data from built-in microphone using PyAudio (https://people.csail.mit.
edu/hubert/pyaudio/).

Parameters

62 Chapter 17. Low-level IO

https://people.csail.mit.edu/hubert/pyaudio/
https://people.csail.mit.edu/hubert/pyaudio/

auditok Documentation, Release v0.2.0

• sampling_rate (int, default: 16000) – number of samples per second of au-
dio data.

• sample_width (int, default: 2) – size in bytes of one audio sample. Possible
values: 1, 2 or 4.

• channels (int, default: 1) – number of channels of audio data.

• frames_per_buffer (int, default: 1024) – PyAudio number of frames per
buffer.

• input_device_index (None or int, default: None) – PyAudio index of
audio device to read audio data from. If None default device is used.

__init__(sampling_rate=16000, sample_width=2, channels=1, frames_per_buffer=1024, in-
put_device_index=None)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([sampling_rate, sample_width, . . .]) Initialize self.
close() Close audio source.
is_open() Return True if audio source is open, False otherwise.
open() Open audio source.
read(size) Read and return size audio samples at most.

Attributes

ch Number of channels in audio stream (alias for chan-
nels).

channels Number of channels in audio stream.
sample_width Number of bytes used to represent one audio sample.
sampling_rate Number of samples per second of audio stream.
sr Number of samples per second of audio stream (alias

for sampling_rate).
sw Number of bytes used to represent one audio sample

(alias for sample_width).

17.6 auditok.io.StdinAudioSource

class auditok.io.StdinAudioSource(sampling_rate=16000, sample_width=2, channels=1)
A class for an AudioSource that reads data from standard input.

Parameters

• sampling_rate (int, default: 16000) – number of samples per second of au-
dio data.

• sample_width (int, default: 2) – size in bytes of one audio sample. Possible
values: 1, 2 or 4.

• channels (int, default: 1) – number of channels of audio data.

__init__(sampling_rate=16000, sample_width=2, channels=1)
Initialize self. See help(type(self)) for accurate signature.

17.6. auditok.io.StdinAudioSource 63

auditok Documentation, Release v0.2.0

Methods

__init__([sampling_rate, sample_width, chan-
nels])

Initialize self.

close() Close audio source.
is_open() Return True if audio source is open, False otherwise.
open() Open audio source.
read(size) Read and return size audio samples at most.

Attributes

ch Number of channels in audio stream (alias for chan-
nels).

channels Number of channels in audio stream.
sample_width Number of bytes used to represent one audio sample.
sampling_rate Number of samples per second of audio stream.
sr Number of samples per second of audio stream (alias

for sampling_rate).
sw Number of bytes used to represent one audio sample

(alias for sample_width).

17.7 auditok.io.PyAudioPlayer

class auditok.io.PyAudioPlayer(sampling_rate=16000, sample_width=2, channels=1)
A class for audio playback using Pyaudio (https://people.csail.mit.edu/hubert/pyaudio/).

Parameters

• sampling_rate (int, default: 16000) – number of samples per second of au-
dio data.

• sample_width (int, default: 2) – size in bytes of one audio sample. Possible
values: 1, 2 or 4.

• channels (int, default: 1) – number of channels of audio data.

__init__(sampling_rate=16000, sample_width=2, channels=1)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([sampling_rate, sample_width, chan-
nels])

Initialize self.

play(data[, progress_bar])
stop()

17.8 auditok.io.from_file

auditok.io.from_file(filename, audio_format=None, large_file=False, **kwargs)
Read audio data from filename and return an AudioSource object. if audio_format is None, the appropriate

64 Chapter 17. Low-level IO

https://people.csail.mit.edu/hubert/pyaudio/

auditok Documentation, Release v0.2.0

AudioSource class is guessed from file’s extension. filename can be a compressed audio or video file. This will
require installing pydub (https://github.com/jiaaro/pydub).

The normal behavior is to load all audio data to memory from which a BufferAudioSource object is
created. This should be convenient most of the time unless audio file is very large. In that case, and in order
to load audio data in lazy manner (i.e. read data from disk each time AudioSource.read() is called),
large_file should be True.

Note that the current implementation supports only wave and raw formats for lazy audio loading.

If an audio format is raw, the following keyword arguments are required:

• sampling_rate, sr: int, sampling rate of audio data.

• sample_width, sw: int, size in bytes of one audio sample.

• channels, ch: int, number of channels of audio data.

See also:

to_file()

Parameters

• filename (str) – path to input audio or video file.

• audio_format (str) – audio format used to save data (e.g. raw, webm, wav, ogg).

• large_file (bool, default: False) – if True, audio won’t fully be loaded to
memory but only when a window is read from disk.

Other Parameters

• sampling_rate, sr (int) – sampling rate of audio data

• sample_width (int) – sample width (i.e. number of bytes used to represent one audio sam-
ple)

• channels (int) – number of channels of audio data

Returns audio_source – an AudioSource object that reads data from input file.

Return type AudioSource

Raises AudioIOError – raised if audio data cannot be read in the given format or if format is raw
and one or more audio parameters are missing.

17.9 auditok.io.to_file

auditok.io.to_file(data, file, audio_format=None, **kwargs)
Writes audio data to file. If audio_format is None, output audio format will be guessed from extension. If
audio_format is None and file comes without an extension then audio data will be written as a raw audio file.

Parameters

• data (bytes-like) – audio data to be written. Can be a bytes, bytearray, memoryview,
array or numpy.ndarray object.

• file (str) – path to output audio file.

• audio_format (str) – audio format used to save data (e.g. raw, webm, wav, ogg)

• kwargs (dict) – If an audio format other than raw is used, the following keyword argu-
ments are required:

17.9. auditok.io.to_file 65

https://github.com/jiaaro/pydub

auditok Documentation, Release v0.2.0

– sampling_rate, sr: int, sampling rate of audio data.

– sample_width, sw: int, size in bytes of one audio sample.

– channels, ch: int, number of channels of audio data.

Raises

• AudioParameterError if output format is different than raw and one or more

• audio parameters are missing. AudioIOError if audio data cannot be written

• in the desired format.

17.10 auditok.io.player_for

auditok.io.player_for(source)
Return an AudioPlayer compatible with source (i.e., has the same sampling rate, sample width and number of
channels).

Parameters source (AudioSource) – An object that has sampling_rate, sample_width and
sample_width attributes.

Returns player – An audio player that has the same sampling rate, sample width and number of
channels as source.

Return type PyAudioPlayer

class auditok.io.AudioSource(sampling_rate, sample_width, channels)
Base class for audio source objects.

Subclasses should implement methods to open/close and audio stream and read the desired amount of audio
samples.

Parameters

• sampling_rate (int) – number of samples per second of audio data.

• sample_width (int) – size in bytes of one audio sample. Possible values: 1, 2 or 4.

• channels (int) – number of channels of audio data.

ch
Number of channels in audio stream (alias for channels).

channels
Number of channels in audio stream.

close()
Close audio source.

is_open()
Return True if audio source is open, False otherwise.

open()
Open audio source.

read(size)
Read and return size audio samples at most.

Parameters size (int) – Number of samples to read.

66 Chapter 17. Low-level IO

auditok Documentation, Release v0.2.0

Returns

data – Audio data as a bytes object of length N * sample_width * channels where N equals:

• size if size <= remaining samples

• remaining samples if size > remaining samples

Return type bytes

sample_width
Number of bytes used to represent one audio sample.

sampling_rate
Number of samples per second of audio stream.

sr
Number of samples per second of audio stream (alias for sampling_rate).

sw
Number of bytes used to represent one audio sample (alias for sample_width).

class auditok.io.Rewindable(sampling_rate, sample_width, channels)
Base class for rewindable audio streams.

Subclasses should implement a method to return back to the start of an the stream (rewind), as well as a property
getter/setter named position that reads/sets stream position expressed in number of samples.

position
Return stream position in number of samples.

position_ms
Return stream position in milliseconds.

position_s
Return stream position in seconds.

rewind()
Go back to the beginning of audio stream.

class auditok.io.BufferAudioSource(data, sampling_rate=16000, sample_width=2, chan-
nels=1)

An AudioSource that encapsulates and reads data from a memory buffer.

This class implements the Rewindable interface. :param data: audio data :type data: bytes :param sampling_rate:
number of samples per second of audio data. :type sampling_rate: int, default: 16000 :param sample_width:
size in bytes of one audio sample. Possible values: 1, 2 or 4. :type sample_width: int, default: 2 :param
channels: number of channels of audio data. :type channels: int, default: 1

close()
Close audio source.

data
Get raw audio data as a bytes object.

is_open()
Return True if audio source is open, False otherwise.

open()
Open audio source.

position
Get stream position in number of samples

17.10. auditok.io.player_for 67

auditok Documentation, Release v0.2.0

position_ms
Get stream position in milliseconds.

read(size)
Read and return size audio samples at most.

Parameters size (int) – Number of samples to read.

Returns

data – Audio data as a bytes object of length N * sample_width * channels where N equals:

• size if size <= remaining samples

• remaining samples if size > remaining samples

Return type bytes

rewind()
Go back to the beginning of audio stream.

class auditok.io.RawAudioSource(file, sampling_rate, sample_width, channels)
A class for an AudioSource that reads data from a raw (headerless) audio file.

This class should be used for large raw audio files to avoid loading the whole data to memory.

Parameters

• filename (str) – path to a raw audio file.

• sampling_rate (int) – Number of samples per second of audio data.

• sample_width (int) – Size in bytes of one audio sample. Possible values : 1, 2, 4.

• channels (int) – Number of channels of audio data.

open()
Open audio source.

class auditok.io.WaveAudioSource(filename)
A class for an AudioSource that reads data from a wave file.

This class should be used for large wave files to avoid loading the whole data to memory.

Parameters filename (str) – path to a valid wave file.

open()
Open audio source.

class auditok.io.PyAudioSource(sampling_rate=16000, sample_width=2, channels=1,
frames_per_buffer=1024, input_device_index=None)

A class for an AudioSource that reads data from built-in microphone using PyAudio (https://people.csail.mit.
edu/hubert/pyaudio/).

Parameters

• sampling_rate (int, default: 16000) – number of samples per second of au-
dio data.

• sample_width (int, default: 2) – size in bytes of one audio sample. Possible
values: 1, 2 or 4.

• channels (int, default: 1) – number of channels of audio data.

• frames_per_buffer (int, default: 1024) – PyAudio number of frames per
buffer.

68 Chapter 17. Low-level IO

https://people.csail.mit.edu/hubert/pyaudio/
https://people.csail.mit.edu/hubert/pyaudio/

auditok Documentation, Release v0.2.0

• input_device_index (None or int, default: None) – PyAudio index of
audio device to read audio data from. If None default device is used.

close()
Close audio source.

is_open()
Return True if audio source is open, False otherwise.

open()
Open audio source.

read(size)
Read and return size audio samples at most.

Parameters size (int) – Number of samples to read.

Returns

data – Audio data as a bytes object of length N * sample_width * channels where N equals:

• size if size <= remaining samples

• remaining samples if size > remaining samples

Return type bytes

class auditok.io.StdinAudioSource(sampling_rate=16000, sample_width=2, channels=1)
A class for an AudioSource that reads data from standard input.

Parameters

• sampling_rate (int, default: 16000) – number of samples per second of au-
dio data.

• sample_width (int, default: 2) – size in bytes of one audio sample. Possible
values: 1, 2 or 4.

• channels (int, default: 1) – number of channels of audio data.

close()
Close audio source.

is_open()
Return True if audio source is open, False otherwise.

open()
Open audio source.

class auditok.io.PyAudioPlayer(sampling_rate=16000, sample_width=2, channels=1)
A class for audio playback using Pyaudio (https://people.csail.mit.edu/hubert/pyaudio/).

Parameters

• sampling_rate (int, default: 16000) – number of samples per second of au-
dio data.

• sample_width (int, default: 2) – size in bytes of one audio sample. Possible
values: 1, 2 or 4.

• channels (int, default: 1) – number of channels of audio data.

auditok.io.from_file(filename, audio_format=None, large_file=False, **kwargs)
Read audio data from filename and return an AudioSource object. if audio_format is None, the appropriate
AudioSource class is guessed from file’s extension. filename can be a compressed audio or video file. This will
require installing pydub (https://github.com/jiaaro/pydub).

17.10. auditok.io.player_for 69

https://people.csail.mit.edu/hubert/pyaudio/
https://github.com/jiaaro/pydub

auditok Documentation, Release v0.2.0

The normal behavior is to load all audio data to memory from which a BufferAudioSource object is
created. This should be convenient most of the time unless audio file is very large. In that case, and in order
to load audio data in lazy manner (i.e. read data from disk each time AudioSource.read() is called),
large_file should be True.

Note that the current implementation supports only wave and raw formats for lazy audio loading.

If an audio format is raw, the following keyword arguments are required:

• sampling_rate, sr: int, sampling rate of audio data.

• sample_width, sw: int, size in bytes of one audio sample.

• channels, ch: int, number of channels of audio data.

See also:

to_file()

Parameters

• filename (str) – path to input audio or video file.

• audio_format (str) – audio format used to save data (e.g. raw, webm, wav, ogg).

• large_file (bool, default: False) – if True, audio won’t fully be loaded to
memory but only when a window is read from disk.

Other Parameters

• sampling_rate, sr (int) – sampling rate of audio data

• sample_width (int) – sample width (i.e. number of bytes used to represent one audio sam-
ple)

• channels (int) – number of channels of audio data

Returns audio_source – an AudioSource object that reads data from input file.

Return type AudioSource

Raises AudioIOError – raised if audio data cannot be read in the given format or if format is raw
and one or more audio parameters are missing.

auditok.io.to_file(data, file, audio_format=None, **kwargs)
Writes audio data to file. If audio_format is None, output audio format will be guessed from extension. If
audio_format is None and file comes without an extension then audio data will be written as a raw audio file.

Parameters

• data (bytes-like) – audio data to be written. Can be a bytes, bytearray, memoryview,
array or numpy.ndarray object.

• file (str) – path to output audio file.

• audio_format (str) – audio format used to save data (e.g. raw, webm, wav, ogg)

• kwargs (dict) – If an audio format other than raw is used, the following keyword argu-
ments are required:

– sampling_rate, sr: int, sampling rate of audio data.

– sample_width, sw: int, size in bytes of one audio sample.

– channels, ch: int, number of channels of audio data.

Raises

70 Chapter 17. Low-level IO

auditok Documentation, Release v0.2.0

• AudioParameterError if output format is different than raw and one or more

• audio parameters are missing. AudioIOError if audio data cannot be written

• in the desired format.

auditok.io.player_for(source)
Return an AudioPlayer compatible with source (i.e., has the same sampling rate, sample width and number of
channels).

Parameters source (AudioSource) – An object that has sampling_rate, sample_width and
sample_width attributes.

Returns player – An audio player that has the same sampling rate, sample width and number of
channels as source.

Return type PyAudioPlayer

17.10. auditok.io.player_for 71

auditok Documentation, Release v0.2.0

72 Chapter 17. Low-level IO

CHAPTER 18

Signal processing

Module for basic audio signal processing and array operations.

to_array(data, sample_width, channels) Extract individual channels of audio data and return a
list of arrays of numeric samples.

extract_single_channel(data, fmt, channels,
. . .)
compute_average_channel(data, fmt, channels) Compute and return average channel of multi-channel

audio data.
compute_average_channel_stereo(data, . . .) Compute and return average channel of stereo audio

data.
separate_channels(data, fmt, channels) Create a list of arrays of audio samples (array.array ob-

jects), one for each channel.
calculate_energy_single_channel(data,
. . .)

Calculate the energy of mono audio data.

calculate_energy_multichannel(x, sam-
ple_width)

Calculate the energy of multi-channel audio data.

18.1 auditok.signal.to_array

auditok.signal.to_array(data, sample_width, channels)
Extract individual channels of audio data and return a list of arrays of numeric samples. This will always return
a list of array.array objects (one per channel) even if audio data is mono.

Parameters

• data (bytes) – raw audio data.

• sample_width (int) – size in bytes of one audio sample (one channel considered).

Returns samples_arrays – list of arrays of audio samples.

Return type list

73

auditok Documentation, Release v0.2.0

18.2 auditok.signal.extract_single_channel

auditok.signal.extract_single_channel(data, fmt, channels, selected)

18.3 auditok.signal.compute_average_channel

auditok.signal.compute_average_channel(data, fmt, channels)
Compute and return average channel of multi-channel audio data. If the number of channels is 2, use
compute_average_channel_stereo() (much faster). This function uses satandard array module to
convert bytes data into an array of numeric values.

Parameters

• data (bytes) – multi-channel audio data to mix down.

• fmt (str) – format (single character) to pass to array.array to convert data into an array
of samples. This should be “b” if audio data’s sample width is 1, “h” if it’s 2 and “i” if it’s
4.

• channels (int) – number of channels of audio data.

Returns mono_audio – mixed down audio data.

Return type bytes

18.4 auditok.signal.compute_average_channel_stereo

auditok.signal.compute_average_channel_stereo(data, sample_width)
Compute and return average channel of stereo audio data. This function should be used when the number of
channels is exactly 2 because in that case we can use standard audioop module which much faster then calling
compute_average_channel().

Parameters

• data (bytes) – 2-channel audio data to mix down.

• sample_width (int) – size in bytes of one audio sample (one channel considered).

Returns mono_audio – mixed down audio data.

Return type bytes

18.5 auditok.signal.separate_channels

auditok.signal.separate_channels(data, fmt, channels)
Create a list of arrays of audio samples (array.array objects), one for each channel.

Parameters

• data (bytes) – multi-channel audio data to mix down.

• fmt (str) – format (single character) to pass to array.array to convert data into an array
of samples. This should be “b” if audio data’s sample width is 1, “h” if it’s 2 and “i” if it’s
4.

• channels (int) – number of channels of audio data.

74 Chapter 18. Signal processing

auditok Documentation, Release v0.2.0

Returns channels_arr – list of audio channels, each as a standard array.array.

Return type list

18.6 auditok.signal.calculate_energy_single_channel

auditok.signal.calculate_energy_single_channel(data, sample_width)
Calculate the energy of mono audio data. Energy is computed as:

𝑒𝑛𝑒𝑟𝑔𝑦 = 20 log(
√︀

(1/𝑁

𝑁∑︁
𝑖

𝑎𝑖
2))𝑤ℎ𝑒𝑟𝑒a_i𝑖𝑠𝑡ℎ𝑒𝑖− 𝑡ℎ𝑎𝑢𝑑𝑖𝑜𝑠𝑎𝑚𝑝𝑙𝑒𝑎𝑛𝑑N𝑖𝑠𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑎𝑢𝑑𝑖𝑜𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑛𝑑𝑎𝑡𝑎.

Parameters

• data (bytes) – single-channel audio data.
• sample_width (int) – size in bytes of one audio sample.

Returns
energy – energy of audio signal.

Return type
float

18.7 auditok.signal.calculate_energy_multichannel

auditok.signal.calculate_energy_multichannel(x, sample_width, aggregation_fn=<built-in
function max>)

Calculate the energy of multi-channel audio data. Energy is calculated channel-wise. An aggregation function
is applied to the resulting energies (default: max). Also see calculate_energy_single_channel().

Parameters

• data (bytes) – single-channel audio data.

• sample_width (int) – size in bytes of one audio sample (one channel considered).

• aggregation_fn (callable, default: max) – aggregation function to apply
to the resulting per-channel energies.

Returns energy – aggregated energy of multi-channel audio signal.

Return type float

auditok.signal.calculate_energy_multichannel(x, sample_width, aggregation_fn=<built-in
function max>)

Calculate the energy of multi-channel audio data. Energy is calculated channel-wise. An aggregation function
is applied to the resulting energies (default: max). Also see calculate_energy_single_channel().

Parameters

• data (bytes) – single-channel audio data.

• sample_width (int) – size in bytes of one audio sample (one channel considered).

• aggregation_fn (callable, default: max) – aggregation function to apply
to the resulting per-channel energies.

Returns energy – aggregated energy of multi-channel audio signal.

Return type float

18.6. auditok.signal.calculate_energy_single_channel 75

auditok Documentation, Release v0.2.0

auditok.signal.calculate_energy_single_channel(data, sample_width)
Calculate the energy of mono audio data. Energy is computed as:

𝑒𝑛𝑒𝑟𝑔𝑦 = 20 log(
√︀

(1/𝑁

𝑁∑︁
𝑖

𝑎𝑖
2))𝑤ℎ𝑒𝑟𝑒a_i𝑖𝑠𝑡ℎ𝑒𝑖− 𝑡ℎ𝑎𝑢𝑑𝑖𝑜𝑠𝑎𝑚𝑝𝑙𝑒𝑎𝑛𝑑N𝑖𝑠𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑎𝑢𝑑𝑖𝑜𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑛𝑑𝑎𝑡𝑎.

Parameters

• data (bytes) – single-channel audio data.
• sample_width (int) – size in bytes of one audio sample.

Returns
energy – energy of audio signal.

Return type
float

auditok.signal.compute_average_channel(data, fmt, channels)
Compute and return average channel of multi-channel audio data. If the number of channels is 2, use
compute_average_channel_stereo() (much faster). This function uses satandard array module to
convert bytes data into an array of numeric values.

Parameters

• data (bytes) – multi-channel audio data to mix down.

• fmt (str) – format (single character) to pass to array.array to convert data into an array
of samples. This should be “b” if audio data’s sample width is 1, “h” if it’s 2 and “i” if it’s
4.

• channels (int) – number of channels of audio data.

Returns mono_audio – mixed down audio data.

Return type bytes

auditok.signal.compute_average_channel_stereo(data, sample_width)
Compute and return average channel of stereo audio data. This function should be used when the number of
channels is exactly 2 because in that case we can use standard audioop module which much faster then calling
compute_average_channel().

Parameters

• data (bytes) – 2-channel audio data to mix down.

• sample_width (int) – size in bytes of one audio sample (one channel considered).

Returns mono_audio – mixed down audio data.

Return type bytes

auditok.signal.separate_channels(data, fmt, channels)
Create a list of arrays of audio samples (array.array objects), one for each channel.

Parameters

• data (bytes) – multi-channel audio data to mix down.

• fmt (str) – format (single character) to pass to array.array to convert data into an array
of samples. This should be “b” if audio data’s sample width is 1, “h” if it’s 2 and “i” if it’s
4.

• channels (int) – number of channels of audio data.

76 Chapter 18. Signal processing

auditok Documentation, Release v0.2.0

Returns channels_arr – list of audio channels, each as a standard array.array.

Return type list

auditok.signal.to_array(data, sample_width, channels)
Extract individual channels of audio data and return a list of arrays of numeric samples. This will always return
a list of array.array objects (one per channel) even if audio data is mono.

Parameters

• data (bytes) – raw audio data.

• sample_width (int) – size in bytes of one audio sample (one channel considered).

Returns samples_arrays – list of arrays of audio samples.

Return type list

18.7. auditok.signal.calculate_energy_multichannel 77

auditok Documentation, Release v0.2.0

78 Chapter 18. Signal processing

CHAPTER 19

Dataset

This module contains links to audio files that can be used for test purposes.

one_to_six_arabic_16000_mono_bc_noise A wave file that contains a pronunciation of Arabic
numbers from 1 to 6

was_der_mensch_saet_mono_44100_lead_trail_silenceA wave file that contains a sentence with a long leading
and trailing silence

19.1 auditok.dataset.one_to_six_arabic_16000_mono_bc_noise

auditok.dataset.one_to_six_arabic_16000_mono_bc_noise = '/home/docs/checkouts/readthedocs.org/user_builds/auditok/checkouts/master/auditok/data/1to6arabic_16000_mono_bc_noise.wav'
A wave file that contains a pronunciation of Arabic numbers from 1 to 6

19.2 auditok.dataset.was_der_mensch_saet_mono_44100_lead_trail_silence

auditok.dataset.was_der_mensch_saet_mono_44100_lead_trail_silence = '/home/docs/checkouts/readthedocs.org/user_builds/auditok/checkouts/master/auditok/data/was_der_mensch_saet_das_wird_er_vielfach_ernten_44100Hz_mono_lead_trail_silence.wav'
A wave file that contains a sentence with a long leading and trailing silence

auditok.dataset.one_to_six_arabic_16000_mono_bc_noise = '/home/docs/checkouts/readthedocs.org/user_builds/auditok/checkouts/master/auditok/data/1to6arabic_16000_mono_bc_noise.wav'
A wave file that contains a pronunciation of Arabic numbers from 1 to 6

auditok.dataset.was_der_mensch_saet_mono_44100_lead_trail_silence = '/home/docs/checkouts/readthedocs.org/user_builds/auditok/checkouts/master/auditok/data/was_der_mensch_saet_das_wird_er_vielfach_ernten_44100Hz_mono_lead_trail_silence.wav'
A wave file that contains a sentence with a long leading and trailing silence

79

auditok Documentation, Release v0.2.0

80 Chapter 19. Dataset

CHAPTER 20

License

MIT.

81

auditok Documentation, Release v0.2.0

82 Chapter 20. License

Python Module Index

a
auditok.core, 33
auditok.dataset, 79
auditok.io, 59
auditok.signal, 73
auditok.util, 47

83

auditok Documentation, Release v0.2.0

84 Python Module Index

Index

Symbols
__init__() (auditok.core.AudioRegion method), 36
__init__() (auditok.core.StreamTokenizer method),

39
__init__() (auditok.io.AudioSource method), 60
__init__() (auditok.io.BufferAudioSource method),

61
__init__() (auditok.io.PyAudioPlayer method), 64
__init__() (auditok.io.PyAudioSource method), 63
__init__() (auditok.io.Rewindable method), 60
__init__() (auditok.io.StdinAudioSource method), 63
__init__() (auditok.io.WaveAudioSource method), 62
__init__() (auditok.util.AudioEnergyValidator

method), 48
__init__() (auditok.util.AudioReader method), 49
__init__() (auditok.util.Recorder method), 50

A
ads() (auditok.util.ADSFactory static method), 54
ADSFactory (class in auditok.util), 53
AudioDataSource (in module auditok.util), 55
AudioEnergyValidator (class in auditok.util), 47,

56
AudioReader (class in auditok.util), 48, 55
AudioRegion (class in auditok.core), 36, 41
AudioSource (class in auditok.io), 59, 66
auditok.core (module), 33
auditok.dataset (module), 79
auditok.io (module), 59
auditok.signal (module), 73
auditok.util (module), 47

B
BufferAudioSource (class in auditok.io), 61, 67

C
calculate_energy_multichannel() (in mod-

ule auditok.signal), 75

calculate_energy_single_channel() (in
module auditok.signal), 75

ch (auditok.core.AudioRegion attribute), 42
ch (auditok.io.AudioSource attribute), 66
channels (auditok.core.AudioRegion attribute), 42
channels (auditok.io.AudioSource attribute), 66
close() (auditok.io.AudioSource method), 66
close() (auditok.io.BufferAudioSource method), 67
close() (auditok.io.PyAudioSource method), 69
close() (auditok.io.StdinAudioSource method), 69
compute_average_channel() (in module audi-

tok.signal), 74, 76
compute_average_channel_stereo() (in mod-

ule auditok.signal), 74, 76

D
data (auditok.io.BufferAudioSource attribute), 67
DataSource (class in auditok.util), 53
DataValidator (class in auditok.util), 53
duration (auditok.core.AudioRegion attribute), 42

E
extract_single_channel() (in module audi-

tok.signal), 74

F
from_file() (in module auditok.io), 64, 69

I
is_open() (auditok.io.AudioSource method), 66
is_open() (auditok.io.BufferAudioSource method), 67
is_open() (auditok.io.PyAudioSource method), 69
is_open() (auditok.io.StdinAudioSource method), 69
is_valid() (auditok.util.AudioEnergyValidator

method), 57
is_valid() (auditok.util.DataValidator method), 53

L
len (auditok.core.AudioRegion attribute), 42

85

auditok Documentation, Release v0.2.0

load() (auditok.core.AudioRegion class method), 42
load() (in module auditok.core), 33, 39

M
make_channel_selector() (in module audi-

tok.util), 51, 52
make_duration_formatter() (in module audi-

tok.util), 50, 52
millis (auditok.core.AudioRegion attribute), 42

O
one_to_six_arabic_16000_mono_bc_noise

(in module auditok.dataset), 79
open() (auditok.io.AudioSource method), 66
open() (auditok.io.BufferAudioSource method), 67
open() (auditok.io.PyAudioSource method), 69
open() (auditok.io.RawAudioSource method), 68
open() (auditok.io.StdinAudioSource method), 69
open() (auditok.io.WaveAudioSource method), 68

P
play() (auditok.core.AudioRegion method), 42
player_for() (in module auditok.io), 66, 71
plot() (auditok.core.AudioRegion method), 42
position (auditok.io.BufferAudioSource attribute), 67
position (auditok.io.Rewindable attribute), 67
position_ms (auditok.io.BufferAudioSource at-

tribute), 67
position_ms (auditok.io.Rewindable attribute), 67
position_s (auditok.io.Rewindable attribute), 67
PyAudioPlayer (class in auditok.io), 64, 69
PyAudioSource (class in auditok.io), 62, 68

R
RawAudioSource (class in auditok.io), 68
read() (auditok.io.AudioSource method), 66
read() (auditok.io.BufferAudioSource method), 68
read() (auditok.io.PyAudioSource method), 69
read() (auditok.util.AudioReader method), 56
read() (auditok.util.DataSource method), 53
read() (auditok.util.StringDataSource method), 53
Recorder (class in auditok.util), 50, 56
rewind() (auditok.io.BufferAudioSource method), 68
rewind() (auditok.io.Rewindable method), 67
Rewindable (class in auditok.io), 60, 67

S
sample_width (auditok.core.AudioRegion attribute),

43
sample_width (auditok.io.AudioSource attribute), 67
samples (auditok.core.AudioRegion attribute), 43
sampling_rate (auditok.core.AudioRegion attribute),

43

sampling_rate (auditok.io.AudioSource attribute),
67

save() (auditok.core.AudioRegion method), 43
seconds (auditok.core.AudioRegion attribute), 43
separate_channels() (in module auditok.signal),

74, 76
set_data() (auditok.util.StringDataSource method),

53
split() (auditok.core.AudioRegion method), 43
split() (in module auditok.core), 34, 40
split_and_plot() (auditok.core.AudioRegion

method), 44
sr (auditok.core.AudioRegion attribute), 44
sr (auditok.io.AudioSource attribute), 67
StdinAudioSource (class in auditok.io), 63, 69
StreamTokenizer (class in auditok.core), 37, 44
StringDataSource (class in auditok.util), 53
sw (auditok.core.AudioRegion attribute), 44
sw (auditok.io.AudioSource attribute), 67

T
to_array() (in module auditok.signal), 73, 77
to_file() (in module auditok.io), 65, 70
tokenize() (auditok.core.StreamTokenizer method),

46

W
was_der_mensch_saet_mono_44100_lead_trail_silence

(in module auditok.dataset), 79
WaveAudioSource (class in auditok.io), 62, 68

86 Index

	Installation
	Load audio data
	From a file
	From a bytes object
	From the microphone
	Skip part of audio data
	Limit the amount of read audio

	Basic split example
	Split and plot
	Read and split data from the microphone
	Access recorded data after split
	Working with AudioRegions
	Basic region information
	Concatenate regions
	Repeat a region
	Split one region into N regions of equal size
	Slice a region by samples, seconds or milliseconds
	Get arrays of audio samples

	Read and split audio data online
	Read audio data with an external program
	Play back audio detections
	Print out detection information
	Save detections
	Save whole audio stream
	Plot detections
	Core
	auditok.core.load
	auditok.core.split
	auditok.core.AudioRegion
	auditok.core.StreamTokenizer

	Util
	auditok.util.AudioEnergyValidator
	auditok.util.AudioReader
	auditok.util.Recorder
	auditok.util.make_duration_formatter
	auditok.util.make_channel_selector

	Low-level IO
	auditok.io.AudioSource
	auditok.io.Rewindable
	auditok.io.BufferAudioSource
	auditok.io.WaveAudioSource
	auditok.io.PyAudioSource
	auditok.io.StdinAudioSource
	auditok.io.PyAudioPlayer
	auditok.io.from_file
	auditok.io.to_file
	auditok.io.player_for

	Signal processing
	auditok.signal.to_array
	auditok.signal.extract_single_channel
	auditok.signal.compute_average_channel
	auditok.signal.compute_average_channel_stereo
	auditok.signal.separate_channels
	auditok.signal.calculate_energy_single_channel
	auditok.signal.calculate_energy_multichannel

	Dataset
	auditok.dataset.one_to_six_arabic_16000_mono_bc_noise
	auditok.dataset.was_der_mensch_saet_mono_44100_lead_trail_silence

	License
	Python Module Index
	Index

